On the determination of loading and fixing for one end of a rod according to its natural frequencies of oscillation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 114-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The identification problem of fixing conditions for a beam according to five natural frequencies of its vibrations is considered. On the basis of Plucker's conditions arising at the restoration of a matrix according to its minors of the maximal order, the set of well-posedness of the problem is constructed and the correctness according to A. N. Tikhonov is proved. We have found an explicit solution to the problem of the identification matrix of the boundary conditions, the above solution is written out in terms of the characteristic determinant for the corresponding spectral problem. The corresponding examples are provided.
Keywords: eigenvalues, inverse problem, natural frequencies, beam, concentrated inertial element.
@article{VUU_2013_3_a8,
     author = {A. M. Akhtyamov and A. V. Muftakhov and A. A. Akhtyamova},
     title = {On the determination of loading and fixing for one end of a~rod according to its natural frequencies of oscillation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {114--129},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_3_a8/}
}
TY  - JOUR
AU  - A. M. Akhtyamov
AU  - A. V. Muftakhov
AU  - A. A. Akhtyamova
TI  - On the determination of loading and fixing for one end of a rod according to its natural frequencies of oscillation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 114
EP  - 129
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_3_a8/
LA  - ru
ID  - VUU_2013_3_a8
ER  - 
%0 Journal Article
%A A. M. Akhtyamov
%A A. V. Muftakhov
%A A. A. Akhtyamova
%T On the determination of loading and fixing for one end of a rod according to its natural frequencies of oscillation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 114-129
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2013_3_a8/
%G ru
%F VUU_2013_3_a8
A. M. Akhtyamov; A. V. Muftakhov; A. A. Akhtyamova. On the determination of loading and fixing for one end of a rod according to its natural frequencies of oscillation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 114-129. http://geodesic.mathdoc.fr/item/VUU_2013_3_a8/

[1] Tikhonov A. N., Arsenin V. Ya., Methods for solving ill-posed problems, Nauka, Moscow, 1974, 224 pp. | MR | Zbl

[2] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978, 200 pp. | MR

[3] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Ill-posed problems of mathematical physics and analysis, Nauka, Moscow, 1980, 288 pp. | MR

[4] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Numerical methods for solving ill-posed problems, Nauka, Moscow, 1990, 232 pp. | MR | Zbl

[5] Tikhonov A. N., Leonov A. S., Yagola A. G., Nonlinear ill-posed problems, Nauka, Moscow, 1995 | MR | Zbl

[6] Lavrent'ev M. M., Reznitskaya K. Kh., Yakhno V. G., One-dimensional inverse problems of mathematical physics, Nauka, Novosibirsk, 1982 | MR

[7] Lavrent'ev M. M., The theory of operators and ill-posed problems, Izd. Inst. Mat., Novosibirsk, 1999 | MR

[8] Strutt J. W. (Lord Rayleigh), The Theory of Sound, v. I, Gostekhizdat, Moscow–Leningrad, 1940

[9] Kollatz L., Eigenvalue problems (with technical applications), Nauka, Moscow, 1968, 503 pp. | MR

[10] Vibrations in technics: the handbook, v. 1, Oscillation of linear systems, Mashinostroenie, Moscow, 1978, 352 pp.

[11] Gontkevich V. S., Characteristic oscillations of plates and shells, Naukova dumka, Kiev, 1964, 288 pp. | Zbl

[12] Akulenko L. D., Nesterov S. V., “The frequency-parametric analysis of characteristic oscillations of non-uniform rods”, Prikl. Mat. Mekh., 67:4 (2003), 588–602 | MR | Zbl

[13] Gladwell G. M. L., Inverse problems of the theory of oscillations, Regular and Chaotic Dynamic, Instutute of Computer Science, Moscow–Izhevsk, 2008, 608 pp.

[14] Gladwell G. M. L., Movahhedy M., “Reconstruction of mass-spring system from spectral data. I: Theory”, Inverse problems in engineering, 1:2 (1995), 179–189 | DOI | MR

[15] Movahhedy M., Ismail F., Gladwell G. M. L., “Reconstruction of mass-spring system from spectral data. II: Experiment”, Inverse problems in engineering, 1:4 (1995), 315–327 | DOI

[16] Morassi A., Dilena M., “On point mass identification in rods and beams from minimal frequency measurements”, Inverse problems in engineering, 10:3 (2002), 183–201 | DOI

[17] Vatul'yan A. O., Inverse problems in the mechanic of deformable solid body, Fizmatlit, Moscow, 2007, 224 pp.

[18] Il'gamov M. A., Khakimov A. G., “Diagnostics of fastening and damages of a beam on elastic pillars”, Kontrol'. Diagnostika, 9, Izd. Dom “Spektr”, Moscow, 2010, 57–63

[19] Il'gamov M. A., “Diagnostics of damages of a vertical bar”, Tr. Inst. Mekh. Ufim. Nauch. Tsentra Ross. Akad. Nauk, 5, Gilem, Ufa, 2007, 201–211

[20] Akhatov I. Sh., Akhtyamov A. M., “Determination of the form of attachment of a rod using the natural frequencies of its flexural oscillations”, Journal of Applied Mathematics and Mechanics, 65:2 (2001), 283–290 | DOI | MR | Zbl

[21] Akhtyamov A. M., Mouftakhov A. V., Yamilova L. S., “Identification of the type and parameters of fastening from the natural frequencies of the fastened rod”, Acoustical Physics, 54:2 (2008), 146–152 | DOI

[22] Akhtyamov A. M., Urmancheev S. F., “Determination of the parameters of a rigid body clamped at an end of a beam from the natural frequencies of vibrations”, Journal of Applied and Industrial Mathematics, 4:1 (2010), 1–5 | DOI | Zbl

[23] Akhtyamov A. M., “On the uniqueness of the solution of an inverse spectral problem”, Differential Equations, 39:8 (2003), 1061–1066 | DOI | MR | Zbl

[24] Akhtyamov A. M., Safina G. F., “Vibration-proof conduit fastening”, Journal of Applied Mechanics and Technical Physics, 49:1 (2008), 114–121 | DOI | MR | Zbl

[25] Sadovnichii V. A., Sultanaev Ya. T., Akhtyamov A. M., Inverse Sturm–Liouville problem with nonseparated boundary conditions, Moscow State University, Moscow, 2009, 184 pp.

[26] Ahtyamov A. M., Theory of identification of boundary conditions and its applications, Fizmatlit, Moscow, 2009, 272 pp. | Zbl

[27] Naimark M. A., Linear differential operators, Nauka, Moscow, 1969, 526 pp. | MR | Zbl

[28] Postnikov M. M., Linear algebra and differential geometry, Nauka, Moscow, 1979, 312 pp. | MR

[29] Mamford D. B., Algebraic geometry, v. 1, Complex varieties, Mir, Moscow, 1979 | MR

[30] Hodge W. V. D., Pedoe D., Methods of Algebraic Geometry, Cambridge Univ. Press, Cambridge, 1994, viii+440 pp.

[31] Finikov S. P., Theory of pairs of congruence, Gostekhizdat, Moscow, 1956, 443 pp. | MR