Optimal control under $L_p$-compact constraints on the disturbance
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the optimization of a guaranteed result for the control system, described by an ordinary differential equation, and a continuous payoff functional, is considered. At every moment the values of the control and of the disturbance are in the given compact sets. The disturbances as functions of time are subject to functional constraints belonging to a given family of constraints. The actions of control are formed by the strategies with full memory. It is demonstrated, that optimal guaranteed result in this problem is equal to the value of the lower game. For the effectiveness of implemented control algorithm additional conditions on the system and appropriate ways of constructing an optimal strategy are specified.
Keywords: optimal guarantee, strategy with full memory, lower game.
@article{VUU_2013_3_a6,
     author = {D. A. Serkov},
     title = {Optimal control under $L_p$-compact constraints on the disturbance},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {79--87},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_3_a6/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - Optimal control under $L_p$-compact constraints on the disturbance
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 79
EP  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_3_a6/
LA  - ru
ID  - VUU_2013_3_a6
ER  - 
%0 Journal Article
%A D. A. Serkov
%T Optimal control under $L_p$-compact constraints on the disturbance
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 79-87
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2013_3_a6/
%G ru
%F VUU_2013_3_a6
D. A. Serkov. Optimal control under $L_p$-compact constraints on the disturbance. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 79-87. http://geodesic.mathdoc.fr/item/VUU_2013_3_a6/

[1] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR | MR | Zbl

[2] Krasovskii N. N., Control of dynamic system, Nauka, Moscow, 1995 | MR

[3] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, Moscow, 1981, 288 pp. | MR | Zbl

[4] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full-memory strategies”, Constantin Caratheodory: An International Tribute, ed. T. M. Rassias, World Scientific, 1991, 636–675 | DOI | MR

[5] Kryazhimskii A. V., Osipov Yu. S., “On the control modeling in dynamic system”, Izv. Akad. Nauk SSSR, Tekhn. Kibernet., 1983, no. 2, 51–60 | MR

[6] Osipov Yu. S., Krayzhimskii A. V., Inverse problem of ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995 | MR | Zbl

[7] Warga J., Optimal control of differential and functional equations, Nauka, Moscow, 1977, 624 pp. | MR

[8] Serkov D. A., “On a property of constructive motions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2009, no. 3, 98–103

[9] Serkov D. A., “Optimization of guaranteed results under functional restrictions on the dynamic disturbance”, Doklady Mathematics, 87:3 (2013), 310–313 | Zbl