@article{VUU_2013_3_a10,
author = {A. M. Lipanov and S. A. Karskanov and E. Yu. Izhboldin},
title = {Solution of unsteady aerodynamics problems on the basis of the numerical algorithms of high-order approximation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {140--150},
year = {2013},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_3_a10/}
}
TY - JOUR AU - A. M. Lipanov AU - S. A. Karskanov AU - E. Yu. Izhboldin TI - Solution of unsteady aerodynamics problems on the basis of the numerical algorithms of high-order approximation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 140 EP - 150 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2013_3_a10/ LA - ru ID - VUU_2013_3_a10 ER -
%0 Journal Article %A A. M. Lipanov %A S. A. Karskanov %A E. Yu. Izhboldin %T Solution of unsteady aerodynamics problems on the basis of the numerical algorithms of high-order approximation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2013 %P 140-150 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2013_3_a10/ %G ru %F VUU_2013_3_a10
A. M. Lipanov; S. A. Karskanov; E. Yu. Izhboldin. Solution of unsteady aerodynamics problems on the basis of the numerical algorithms of high-order approximation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 140-150. http://geodesic.mathdoc.fr/item/VUU_2013_3_a10/
[1] Kudryavtsev A. N., Poplavskaya T. V., Khotyanovskii D. V., “Application of high-order accuracy schemes to numerical simulation of unsteady supersonic flows”, Mat. Model., 19:7 (2007), 39–55 | MR | Zbl
[2] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Mathematical problems of numerical solution for hyperbolic systems of equations, Fizmatlit, Moscow, 2001 | MR
[3] Vorozhtsov E. V., “Application of Lagrange–Burman expansions for numerical integration of inviscid gas equations”, Vychislitel'nye Metody i Programmirovanie, 12 (2011), 348–361
[4] Karskanov S. A., Lipanov A. M., “On critical Reynolds numbers in plane channels with a sudden expansion at the entry”, Computational Mathematics and Mathematical Physics, 50:7 (2010), 1195–1204 | DOI | MR | Zbl
[5] Lipanov A. M., Theoretical mechanics of newtonian quality, Nauka, Moscow, 2011, 551 pp.
[6] Gaitonde D. V., Visbal M. R., “Pade-type high-order boundary filters for the Navier–Stokes equations”, AIAA J., 38:11 (2000), 2103–2112 | DOI
[7] Rizzetta D. P., Visbal M. R., Gaitonde D. P., “Large-eddy simulations of supersonic compression ramp flow by high-order method”, AIAA J., 39:12 (2001), 2283–2292 | DOI
[8] Engquist B., Loetstedt P., Sjoergreen B., “Nonlinear filters for efficient shock computation”, Mathematical computations, 52 (1989), 232–248 | DOI | MR
[9] Yee H. C., “Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation”, J. Comp. Phys., 131:1 (1997), 216–232 | DOI | Zbl
[10] Zalesak S. T., “A Physical interpretation of the Richtmyer two-step Lax–Wendroff scheme, and its generalization to higher spatial order”, Advances in computer methods for partial differential equations, Publ. IMACS, 1984, 491–496
[11] Zalesak S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, Journal of computation physics, 31:3 (1979), 335–362 | DOI | MR | Zbl
[12] Oran E. S., Boris J. P., Numerical simulation of reactive flow, Elsevier, New York, 1987 | MR
[13] Pinchukov V. I., “On construction of monotone predictor-corrector schemes of an arbitrary order of approximation”, Mat. Model., 3:9 (1991), 95–103 | MR | Zbl
[14] Pinchukov V. I., “Nonlinear difference filters and high accuracy symmetrical schemes monotonization”, Mat. Model., 7:3 (1995), 75–86 | MR | Zbl
[15] Shu C.-W., High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, ICASE Report No 2001-11, 2001, 16 pp.
[16] Shu C.-W., “High order ENO and WENO schemes for computational fluid dynamics, in High-order methods for computational physics”, Lecture Notes Computational Science and Engineering, 9, Springer, 1999, 439–582 | DOI | MR | Zbl
[17] Gottlieb S., Shu C.-W., “Total variation diminishing Runge–Kutta schemes”, Mathematics of computation, 67:221 (1998), 73–85 | DOI | MR | Zbl