On compact $T_1$-spaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 20-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider spaces, any subspaces of which are compact. We call such spaces hereditarily compact. The present work covers questions on the existence and methods of constructing hereditarily compact $T_1$-topologies. We prove the existence of $2^\tau$ pairwise incomparable hereditarily compact $T_1$-topologies on an infinite set $X$ of power $\tau$. The characteristics of hereditarily compact spaces are obtained. It is proved that the Tychonoff product of a finite number of hereditarily compact $T_1$-spaces is a hereditarily compact $T_1$-space, but the Tychonoff product of an infinite number of nonsingleton hereditarily compact $T_1$-spaces is not hereditarily compact.
Keywords: compactness, minimal $T_1$-topology, Tychonoff product.
@article{VUU_2013_3_a1,
     author = {M. E. Voronov},
     title = {On compact $T_1$-spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {20--27},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_3_a1/}
}
TY  - JOUR
AU  - M. E. Voronov
TI  - On compact $T_1$-spaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 20
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_3_a1/
LA  - ru
ID  - VUU_2013_3_a1
ER  - 
%0 Journal Article
%A M. E. Voronov
%T On compact $T_1$-spaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 20-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2013_3_a1/
%G ru
%F VUU_2013_3_a1
M. E. Voronov. On compact $T_1$-spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2013), pp. 20-27. http://geodesic.mathdoc.fr/item/VUU_2013_3_a1/