A non-homogeneous sphere as a model of the planets. Internal points of maximum gravity
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 74-84
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtained the criterion for the existence of gravitational potential inflection points within a inhomogeneous spherical planet. According to the criterion obtained, inflection points (the point of local maximum gravity) can exist only at such a distance $r$ from the center, at which the matter density is two-thirds of the average density of the inner ball with a specified radius. The criterion is defined for the axial moment of the planet inertia too.
Keywords: inhomogeneous spheres, Newton's potential, inflection points of potential, model of the planets.
Mots-clés : moment of inertia
@article{VUU_2013_2_a7,
     author = {B. P. Kondratyev and N. G. Trubitsyna and A. O. Oparin and P. O. Solovyeva},
     title = {A non-homogeneous sphere as a model of the planets. {Internal} points of maximum gravity},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {74--84},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a7/}
}
TY  - JOUR
AU  - B. P. Kondratyev
AU  - N. G. Trubitsyna
AU  - A. O. Oparin
AU  - P. O. Solovyeva
TI  - A non-homogeneous sphere as a model of the planets. Internal points of maximum gravity
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 74
EP  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_2_a7/
LA  - ru
ID  - VUU_2013_2_a7
ER  - 
%0 Journal Article
%A B. P. Kondratyev
%A N. G. Trubitsyna
%A A. O. Oparin
%A P. O. Solovyeva
%T A non-homogeneous sphere as a model of the planets. Internal points of maximum gravity
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 74-84
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2013_2_a7/
%G ru
%F VUU_2013_2_a7
B. P. Kondratyev; N. G. Trubitsyna; A. O. Oparin; P. O. Solovyeva. A non-homogeneous sphere as a model of the planets. Internal points of maximum gravity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 74-84. http://geodesic.mathdoc.fr/item/VUU_2013_2_a7/

[1] Duboshin G. N., Teoriya prityazheniya (Theory of gravity), Fizmatgiz, M., 1961, 288 pp.

[2] Snayder P., Dvuhplotnostnaya model Zemnogo shara (Two density model of the Earth), Mir, M., 1988, 160 pp.

[3] Bullen K. E., Plotnost' Zemli (The density of the Earth), Mir, M., 1978, 245 pp.

[4] Kondratyev B. P., Teoriya potentsiala. Novye metody i zadachi s resheniyami (Potential theory. New methods and problems with solutions), Mir, M., 2007, 512 pp.