Keywords: third boundary value problem, dichotomy of solutions, trichotomy, stablization.
@article{VUU_2013_2_a4,
author = {A. V. Neklyudov},
title = {On solutions of third boundary value problem for {Laplace} equation in~a~half-infinite cylinder},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {48--58},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/}
}
TY - JOUR AU - A. V. Neklyudov TI - On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 48 EP - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/ LA - ru ID - VUU_2013_2_a4 ER -
%0 Journal Article %A A. V. Neklyudov %T On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2013 %P 48-58 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/ %G ru %F VUU_2013_2_a4
A. V. Neklyudov. On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 48-58. http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/
[1] Landis E. M., Panasenko G. P., “On a variant of theorem of Phragmen–Lindelef type for elliptic equations with coefficients that are periodic in all variables but one”, Tr. Semin. Im. I. G. Petrovskogo, 5, 1979, 105–136 | MR
[2] Landis E. M., Lakhturov S. S., “Behavior at infinity of solutions to elliptic equations that are periodic in all variables but one”, Dokl. Akad. Nauk SSSR, 250:4 (1980), 803–806 | MR | Zbl
[3] Oleinik O. A., Iosif'yan G. A., “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Mat. Sb., 112:4, 588–610 | MR
[4] Oleinik O. A., Yosifian G. A., “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl
[5] Neklyudov A. V., “On the Neumann problem for higher-order divergent elliptic equations in an unbounded domain, close to a cylinder”, Tr. Semin. Im. I. G. Petrovskogo, 16, 1991, 192–217
[6] Samaitis K. P., “Estimates for solutions of the Neumann and Robin problems for the Laplace equation in a cylinder”, Differ. Uravn., 38:7 (2002), 995–996 | MR | Zbl
[7] Samaitis K. P., “Some estimates for solutions of the Laplace equation in cylinder-like domains”, Differ. Uravn., 38:8 (2002), 1105–1112 | MR | Zbl
[8] Oleinik O. A., Lektsii ob uravneniyakh s chastnymi proizvodnymi (Lectures on partial differential equations), Binom, M., 2005, 260 pp.
[9] Ladyzhenskaya O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa (Linear and quasilinear equations of elliptic type), Nauka, M., 1965, 540 pp. | MR | Zbl
[10] Oleinik O. A., “On properties of solutions of certain boundary problems for equations of elliptic type”, Mat. Sb., 72:3 (1952), 695–702 | MR