On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behavior at the infinity of solutions of the Laplace equation in a half-infinite cylinder providing that third boundary value condition is met $$ \left.{\bigg({{{\partial u }\over{\partial\nu}}+\beta(x)u}\bigg)}\right|_{\Gamma}=0, $$ where $\Gamma$ is the lateral surface of the cylinder; $\beta(x)\geqslant 0$. We prove that any bounded solution is stabilized to some constant and its Dirichlet integral is finite. We describe a condition on boundary coefficient decrease at infinity which provides Dirichlet (dichotomy, stabilization to zero) or Neumann (trichotomy, stabilization to some constant which can be nonzero) problem type behavior of solutions. The main condition on boundary coefficient leading to Dirichlet or Neumann problem type is established in terms of divergence or convergence correspondingly of the integral $\displaystyle{\int_{\Gamma}}x_1\beta(x)\,dS,\quad $ where the variable $x_1$ corresponds to the direction of an axis of the cylinder.
Mots-clés : Laplace equation
Keywords: third boundary value problem, dichotomy of solutions, trichotomy, stablization.
@article{VUU_2013_2_a4,
     author = {A. V. Neklyudov},
     title = {On solutions of third boundary value problem for {Laplace} equation in~a~half-infinite cylinder},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {48--58},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 48
EP  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/
LA  - ru
ID  - VUU_2013_2_a4
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 48-58
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/
%G ru
%F VUU_2013_2_a4
A. V. Neklyudov. On solutions of third boundary value problem for Laplace equation in a half-infinite cylinder. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 48-58. http://geodesic.mathdoc.fr/item/VUU_2013_2_a4/

[1] Landis E. M., Panasenko G. P., “On a variant of theorem of Phragmen–Lindelef type for elliptic equations with coefficients that are periodic in all variables but one”, Tr. Semin. Im. I. G. Petrovskogo, 5, 1979, 105–136 | MR

[2] Landis E. M., Lakhturov S. S., “Behavior at infinity of solutions to elliptic equations that are periodic in all variables but one”, Dokl. Akad. Nauk SSSR, 250:4 (1980), 803–806 | MR | Zbl

[3] Oleinik O. A., Iosif'yan G. A., “On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary”, Mat. Sb., 112:4, 588–610 | MR

[4] Oleinik O. A., Yosifian G. A., “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl

[5] Neklyudov A. V., “On the Neumann problem for higher-order divergent elliptic equations in an unbounded domain, close to a cylinder”, Tr. Semin. Im. I. G. Petrovskogo, 16, 1991, 192–217

[6] Samaitis K. P., “Estimates for solutions of the Neumann and Robin problems for the Laplace equation in a cylinder”, Differ. Uravn., 38:7 (2002), 995–996 | MR | Zbl

[7] Samaitis K. P., “Some estimates for solutions of the Laplace equation in cylinder-like domains”, Differ. Uravn., 38:8 (2002), 1105–1112 | MR | Zbl

[8] Oleinik O. A., Lektsii ob uravneniyakh s chastnymi proizvodnymi (Lectures on partial differential equations), Binom, M., 2005, 260 pp.

[9] Ladyzhenskaya O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa (Linear and quasilinear equations of elliptic type), Nauka, M., 1965, 540 pp. | MR | Zbl

[10] Oleinik O. A., “On properties of solutions of certain boundary problems for equations of elliptic type”, Mat. Sb., 72:3 (1952), 695–702 | MR