Mots-clés : convection, diffusion.
@article{VUU_2013_2_a3,
author = {M. N. Nazarov},
title = {On alternative to partial differential equations for the modelling of reaction{\textendash}diffusion systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {35--47},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a3/}
}
TY - JOUR AU - M. N. Nazarov TI - On alternative to partial differential equations for the modelling of reaction–diffusion systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 35 EP - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2013_2_a3/ LA - ru ID - VUU_2013_2_a3 ER -
%0 Journal Article %A M. N. Nazarov %T On alternative to partial differential equations for the modelling of reaction–diffusion systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2013 %P 35-47 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2013_2_a3/ %G ru %F VUU_2013_2_a3
M. N. Nazarov. On alternative to partial differential equations for the modelling of reaction–diffusion systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 35-47. http://geodesic.mathdoc.fr/item/VUU_2013_2_a3/
[1] Slin'ko M. G., Zelenyak T. I., Akramov T. A., Lavrent'ev M. M., Sheplev V. S., “Nonlinear dynamics of catalytic reactions and process”, review, Matem. Mod., 9:12 (1997), 87–109 | MR | Zbl
[2] Dnestrovskaya E. Yu., Kalitkin N. N., Ritus I. V., “Solving the partial differential equations by schemes with complex coefficients”, Matem. Mod., 3:9 (1991), 114–127 | MR | Zbl
[3] Nazarov M. N., “Generalization of coarse-grained models with introduction of three-dimensional space”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz. Mat. Nauki, 25:4 (2011), 110–117 | DOI
[4] Kenneth A., Chemical kinetics, the study of reaction rates in solution, VCH Publishers, 1991, 496 pp.
[5] Vajda S., Turanyi T., “Principal component analysis for reducing the Edelson–Field–Noyes model of the Belousov–Zhabotinsky reaction”, J. Phys. Chem., 90 (1986), 1664–1670 | DOI
[6] Emanuel' N. M., Knorre D. G., Kurs himicheskoi kinetiki (Course of chemical kinetics), Vysshaya shkola, M., 1984, 463 pp.
[7] Jablonskii G. S., Bykov V. I., Gorban' A. N., Kineticheskie modeli kataliticheskikh reaktsii (Kinetic models of catalytic reactions), Nauka, Novosibirsk, 1983, 255 pp.
[8] Losev S. A., Sergievskaya A. L., Kovach E. A., Nagnibeda E. A., Gordiets B. F., “Kinetics of chemical reactions in thermally nonequilibrium gas”, Matem. Mod., 15:6 (2003), 72–82 | Zbl
[9] Zyn' V. I., “The kinetics of the reactions in a ductless discharge”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz. Mat. Nauki, 1996, no. 4, 184–203 | DOI
[10] Aris R., The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975, 444 pp.
[11] Nazarov M. N., “On the construction of correct mathematical model of chemical kinetics”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 3, 65–73
[12] Cussler E. L., Diffusion: mass transfer in fluid systems, Cambridge University Press, Cambridge, 1997, 580 pp.
[13] Ryzhkov A. B., Noskov O. V., Karavaev A. D., Kazakov V. P., “On stationary points and bifurcations of the Belousov–Zhabotinsky reaction”, Matem. Mod., 10:2 (1998), 71–78 | MR
[14] Vanag V. K., “Waves and patterns in reaction–diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions”, Phys. Usp., 47 (2004), 923–941 | DOI | DOI
[15] Lakhno V. D., Nazipova N. N., Kim V. L., Filippov S. V., Fialko N. S., Ustinin D. M., Teplukhin A. V., Tyul'basheva G. E., Zaitsev A. Yu., Ustinin M. N., “Integrated mathematical model of the living cell”, Mat. Biolog. Bioinform., 2:2 (2007), 361–376