On behaviour of solution of boundary value problem for generalized Cauchy–Riemann equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 27-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following boundary value problem for generalized Cauchy–Riemann equation in the unit disk $G = \{z \in \mathbb{C}: |z| < 1 \}$ is considered in the paper: $\partial_{\overline{z}} w + b(z) \overline{w} = 0,$ $\Re w = g$ on $\partial G,$ $\Im w = h$ at the point $z_0 = 1.$ The coefficient $b(z)$ is chosen from some set $S_P,$ constructed by scales, with $S_P \subsetneq L_2,$ $S_P \not\subset L_q,$ $q > 2.$ The boundary value $g$ is chosen from the space, constructed by a modulus of continuity $\mu$ with some special properties. It is shown that the problem has unique solution $w = w(z)$ in the unit disk $G$ with $w \in C(\overline{G}).$ Moreover, outside the point $z = 0$ the behaviour of the solution $w(z)$ is defined by the same modulus of continuity $\mu;$ it means there is no “logarithmic effect” for the solution.
Keywords: generalized Cauchy–Riemann equation, Dirichlet problem, modulus of continuity.
@article{VUU_2013_2_a2,
     author = {A. S. Il'chukov},
     title = {On behaviour of solution of boundary value problem for generalized {Cauchy{\textendash}Riemann} equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {27--34},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a2/}
}
TY  - JOUR
AU  - A. S. Il'chukov
TI  - On behaviour of solution of boundary value problem for generalized Cauchy–Riemann equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 27
EP  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_2_a2/
LA  - ru
ID  - VUU_2013_2_a2
ER  - 
%0 Journal Article
%A A. S. Il'chukov
%T On behaviour of solution of boundary value problem for generalized Cauchy–Riemann equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 27-34
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2013_2_a2/
%G ru
%F VUU_2013_2_a2
A. S. Il'chukov. On behaviour of solution of boundary value problem for generalized Cauchy–Riemann equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 27-34. http://geodesic.mathdoc.fr/item/VUU_2013_2_a2/

[1] Vekua I. N., Obobshchennye analiticheskie funktsii (Generalized analytic functions), Nauka, M., 1988, 512 pp. | MR | Zbl

[2] Mikhailov L. G., A new class of singular integral equations and its applications to differential equations with singular coefficients, Akademie-Verlag, Berlin, 1970 | MR

[3] Usmanov Z. D., Generalized Cauchy–Riemann systems with a singular point, Pitman Monographs and Surveys in Pure and Applied Mathematics, 85, Longman, Harlow, 1997 | MR | Zbl

[4] Tungatarov A., “On the theory of the Carleman–Vekua equation with a singular point”, Russ. Acad. Sci. Sb. Math., 78:2 (1994), 357–365 | MR | Zbl

[5] Bliev N., Generalized analytic functions in fractional spaces, Longman, Harlow, 1997 | MR | Zbl

[6] Reissig M., Timofeev A., “Dirichlet problems for generalized Cauchy–Riemann systems with singular coefficients”, Complex variables, 73:1–2 (2005), 653–672 | DOI | MR

[7] Timofeev A. Yu., “Boundary problem for the generalized Cauchy–Riemann equation in the spaces, described by the modulus of continuity”, Ufa Mathematical Journal, 4:1 (2012), 146–152

[8] Ilchukov A. S., Timofeev A. Yu., “Dirichlet problem for holomorphic functions in spaces, described by modulus of continuity with predefined conditions”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 1, 58–65

[9] Tutschke W., Vorlesungen über partielle Differentialgleichungen. Klassische, funktionalanalytische und komplexe Methoden, Teubner-Texte zur Mathematik, Leipzig, 1978, 193 pp. | MR