Propositional logic on the basis of algebraic system containing traditional syllogistics
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 127-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article explains the reasons to replace the multi-semantic basis of Aristotle in classical logic and traditional syllogistic with a mono-semantic basis, isomorphic to relationships “equivalent”, “entailing”, “independent”, which happen between terms of reasoning and random events in probability theory. Theoretical results and applications are discussed. The author identifies the drawbacks of the mathematical model which is the basis of classical logics. An advanced version of the mathematical model which is logic $\mathbf{S}_{L_1}$, based on non-degenerative Boolean algebra and an adjoint algebraic set-based system, is proposed. The article considers a non-classical interpretation of judgments in the orthogonal basis of syllogistics; it also describes the opportunities of effective computer validation of logical implication in semantics. A new method of solving logic equations is presented. The samples of solutions are presented.
Keywords: syllogistics, orthogonal basis of syllogistics, Boolean algebra, homomorphism of algebraic systems, logical sequence in semantic sense, probability, logical equations.
Mots-clés : calculations of constituent
@article{VUU_2013_2_a12,
     author = {Yu. M. Smetanin},
     title = {Propositional logic on the basis of algebraic system containing traditional syllogistics},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {127--146},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a12/}
}
TY  - JOUR
AU  - Yu. M. Smetanin
TI  - Propositional logic on the basis of algebraic system containing traditional syllogistics
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 127
EP  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_2_a12/
LA  - ru
ID  - VUU_2013_2_a12
ER  - 
%0 Journal Article
%A Yu. M. Smetanin
%T Propositional logic on the basis of algebraic system containing traditional syllogistics
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 127-146
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2013_2_a12/
%G ru
%F VUU_2013_2_a12
Yu. M. Smetanin. Propositional logic on the basis of algebraic system containing traditional syllogistics. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 127-146. http://geodesic.mathdoc.fr/item/VUU_2013_2_a12/

[1] Bocharov V. A., Markin V. I., Sillogisticheskie teorii (Syllogistic theories), Progress-Traditsiya, M., 2010 | Zbl

[2] Smetanin Yu. M., “Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 4, 144–162

[3] Smetanin Yu. M., “Algorithm for solving polysyllogizm in the orthogonal basis by calculating the constituent sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 4, 172–185

[4] Smetanin Yu. M., Smetanin M. Yu., “Medical diagnostics and orthogonal basis of syllogistics”, Proceedings of 2nd International Conference (OSTIS–2012) (Minsk, 2012), 289–296

[5] Smetanin Yu. M., “Probabilistic logics and orthogonal basis of syllogistics”, Proceedings of 2nd International Conference (OSTIS–2012) (Minsk, 2012), 479–488

[6] Smetanin Yu. M., “Orthogonal logic-probable model for risk estimation in management”, Vestn. Udmurt. Univ. Econ. Law, 2012, no. 3, 66–73

[7] Smetanin Yu. M., “Formal logics on the orthogonal basis of syllogistics”, Logics, Language and Formal Models: Transactions, St. Petersburg State University, St. Petersburg, 2012, 131–144

[8] Kulik B. A., Zuenko A. A., Fridman A. Ya., Algebraicheskii podkhod k intellektual'noi obrabotke dannykh i znanii (Algebraic approach to intellectual data and knowledge processing), Saint-Petersburg State Polytechnical University, 2010

[9] Kulik B. A., Logicheskie osnovy zdravogo smysla (Logic basis of the common sense), Politekhnika, St. Petersburg, 1997 | Zbl

[10] Vladimirov D. A., Bulevy algebry (Boolean algebras), Nauka, M., 1969 | MR

[11] Zakrevskii A. D., Logicheskie uravneniya (Logical equations), Editorial URSS, M., 2003 | MR

[12] Gorbatov V. A., Teoriya chastichno uporyadochennykh sistem (The theory of partially-ordered systems), Soviet radio, M., 1976 | MR | Zbl

[13] Kolmogorov A. N., Teoriya veroyatnostei i matematicheskaya statistika (Probability theory and mathematical statistics), Nauka, M., 1986 | MR

[14] Ryabinin I. A., “Logical probabilistic calculus as the tool of research reliability and safety of structurally-complicated systems”, Avtomatika i Telemekhanika, 2003, no. 7, 178–186 | MR | Zbl

[15] Solozhentsev E. D., Upravlenie riskom i effektivnost'yu v ekonomike: logiko-veroyatnostnyi podkhod (Risk and efficiency management in economics: logical probabilistic approach), St. Petersburg State University, St. Petersburg, 2009, 250 pp.

[16] Russell S., Norvig P., Artificial intellect: modern approach, Second edition, Williams Publishing House, 2006

[17] Courant R., Robbins H., What is mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, London, 1996 | MR | Zbl