Orbits of distant satellites of stars
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 116-126

Voir la notice de l'article provenant de la source Math-Net.Ru

Planar motion of point mass in the field of a point mass (a star) and the Galaxy was studied numerically. The tidal (quadratic) approximation for the galactic potential was accepted. The equations of motion were integrated for the time interval equal to $60/\sqrt{A(A-b)}$ ($A$, $B$ are Oort's coefficients). A particle was considered as escaping if its distance from the star exceeded two distances of the libration points. It was found that osculating eccentricities of remaining particles could be decreasing systematically or almost constant. Table 1 shows dependence of orbit types on initial conditions.
Keywords: stellar dynamics, celestial mechanics
Mots-clés : orbits of satellites of stars, comet orbits.
@article{VUU_2013_2_a11,
     author = {S. A. Proskurin and L. P. Ossipkov},
     title = {Orbits of distant satellites of stars},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {116--126},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_2_a11/}
}
TY  - JOUR
AU  - S. A. Proskurin
AU  - L. P. Ossipkov
TI  - Orbits of distant satellites of stars
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 116
EP  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_2_a11/
LA  - ru
ID  - VUU_2013_2_a11
ER  - 
%0 Journal Article
%A S. A. Proskurin
%A L. P. Ossipkov
%T Orbits of distant satellites of stars
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 116-126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2013_2_a11/
%G ru
%F VUU_2013_2_a11
S. A. Proskurin; L. P. Ossipkov. Orbits of distant satellites of stars. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2013), pp. 116-126. http://geodesic.mathdoc.fr/item/VUU_2013_2_a11/