On controllability of nonlinear distributed systems on a set of discretized controls
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 83-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a nonlinear functional are proved. The controls are assumed to belong to a given set $\mathcal D$ of piecewise constant vector functions id est can be regarded as discretized controls. For the equation under study we define the set $\Omega$ of global solvability as the set of all admissible controls for which the equation has a global solution. As an auxiliary result having a separate interest, we also establish under our hypotheses the equality $\Omega=\mathcal D$. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples, namely a Dirichlet boundary value problem for a second order parabolic equation and a mixed boundary value problem for a second order hyperbolic equation; both equations of a rather general form.
Keywords: nonlinear distributed systems, controllability, discretized controls, Volterra functional operator equation.
@article{VUU_2013_1_a7,
     author = {A. V. Chernov},
     title = {On controllability of nonlinear distributed systems on a~set of discretized controls},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {83--98},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a7/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On controllability of nonlinear distributed systems on a set of discretized controls
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 83
EP  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a7/
LA  - ru
ID  - VUU_2013_1_a7
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On controllability of nonlinear distributed systems on a set of discretized controls
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 83-98
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a7/
%G ru
%F VUU_2013_1_a7
A. V. Chernov. On controllability of nonlinear distributed systems on a set of discretized controls. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 83-98. http://geodesic.mathdoc.fr/item/VUU_2013_1_a7/

[1] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differentsialnye uravneniya, 31:11 (1995), 1893–1900 | Zbl

[2] Egorov A. I., Znamenskaya L. N., “Upravlyaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:11 (2006), 2032–2044 | MR

[3] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[4] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004, 504 pp. | MR

[5] Lions J.-L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl

[6] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl

[7] Rozanova A. V., “Upravlyaemost dlya nelineinogo abstraktnogo evolyutsionnogo uravneniya”, Matematicheskie zametki, 76:4 (2004), 553–567 | DOI | MR | Zbl

[8] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:8 (2012), 1400–1414 | Zbl

[9] Chernov A. V., “O vypuklosti mnozhestv globalnoi razreshimosti upravlyaemykh nachalno-kraevykh zadach”, Differentsialnye uravneniya, 48:4 (2012), 577–586 | MR | Zbl

[10] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matematicheskaya teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[11] Chernov A. V., “O suschestvovanii $\epsilon$-ravnovesiya v volterrovykh funktsionalno-operatornykh igrakh bez diskriminatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 74–92 | Zbl

[12] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izvestiya vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[13] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izvestiya vuzov. Matematika, 2012, no. 3, 62–73 | Zbl

[14] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 51:9 (2011), 1616–1629 | MR | Zbl

[15] Sumin V. I., Chernov A. V., Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, Dep. v VINITI 25.04.2000, No 1198-V00, NNGU, Nizhnii Novgorod, 2000, 75 pp.

[16] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 1(26), 39–49

[17] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21 | MR | Zbl

[18] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Ser. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[19] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differentsialnye uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[20] Chernov A. V., “O volterrovom obobschenii metoda monotonizatsii dlya nelineinykh funktsionalno-operatornykh uravnenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 2, 84–99

[21] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[22] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953, 280 pp.