On necessary boundary conditions for strongly optimal control in infinite horizon control problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we consider the infinite horizon control problems in the free end case. We obtain the necessary conditions of strong optimality. The method of the proof actually follows the classic paper by Halkin, and the boundary condition for infinity that we construct in our paper is a stronger variety of the Seierstad condition. The complete system of relations of the maximum principle that was obtained in the paper allows us to write the expression for the adjoint variable in the form of improper integral that depends only on the developing trajectory. S. M. Aseev, A. V. Kryazhimskii, and V. M. Veliov obtained the similar condition as a necessary condition for certain classes of control problems. As we note in our paper, the obtained conditions of strong optimality lead us to a redefined system of relations for sufficiently broad class of control problems. An example is considered.
Keywords: control problem, strong optimal control, infinite horizon problem, necessary conditions of optimality, transversality condition for infinity, Pontryagin maximum principle.
@article{VUU_2013_1_a5,
     author = {D. V. Khlopin},
     title = {On necessary boundary conditions for strongly optimal control in infinite horizon control problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {49--58},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a5/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - On necessary boundary conditions for strongly optimal control in infinite horizon control problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 49
EP  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a5/
LA  - ru
ID  - VUU_2013_1_a5
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T On necessary boundary conditions for strongly optimal control in infinite horizon control problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 49-58
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a5/
%G ru
%F VUU_2013_1_a5
D. V. Khlopin. On necessary boundary conditions for strongly optimal control in infinite horizon control problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 49-58. http://geodesic.mathdoc.fr/item/VUU_2013_1_a5/

[1] Aseev S. M., Kryazhimskii A. V., “maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Trudy Matematicheskogo in-ta im. V. A. Steklova, 257, 2007, 3–271 | MR | Zbl

[2] Aseev S. M., Besov K. O., Kryazhimskii A. V., “Zadachi optimalnogo upravleniya na beskonechnom promezhutke vremeni v ekonomike”, Uspekhi mat. nauk, 67:2(404) (2012), 3–64 | DOI | MR | Zbl

[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 392 pp.

[5] Khlopin D. V., “Ob uslovii transversalnosti na beskonechnosti v zadachakh upravleniya”, Differentsialnye uravneniya i optimalnoe upravlenie, Tez. dokl. mezhdunar. konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya akademika E. F. Mischenko, MI RAN, Moskva, 2012, 144–146

[6] Khlopin D. V., “O $\tau$-ischezayuschei sopryazhennoi peremennoi v zadachakh upravleniya na beskonechnom promezhutke”, Tez. dokl. Mezhdunar. konf. po differentsialnym uravneniyam i dinamicheskim sistemam, Vladimir, 2012, 173–174

[7] Aseev S. M., Kryazhimskii A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43 (2004), 1094–1119 | DOI | MR | Zbl

[8] Aseev S. M., Kryazhimskii A. V., “Shadow prices in infinite-horizon optimal control problems with dominating discounts”, Applied Mathematics and Computation, 204:2 (2008), 519–531 | DOI | MR | Zbl

[9] Aseev S. M., Kryazhimskii A. V., Tarasyev A. M., “The Pontryagin maximum principle and transversality conditions for an optimal control problem with infinite time interval”, Proc. Steklov Inst. Math., 233, 2001, 64–80 | MR | Zbl

[10] Aseev S. M., Veliov V. M., Needle variations in infinite-horizon optimal control, IIASA Interim Rept., Research Report 2012–04, IASA, Laxenburg, September, 2012, 22 pp.

[11] Aseev S. M., Veliov V. M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 19:1–2 (2012), 43–63 | MR | Zbl

[12] Aubin J. P., Clarke F. H., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control Optim., 17 (1979), 567–586 | DOI | MR | Zbl

[13] Bogucz D., “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156:2 (2013), 650–682 | DOI | MR

[14] Carlson D. A., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64:1 (1990), 55–69 | DOI | MR | Zbl

[15] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite horizon optimal control. Deterministic and stochastic systems, Springer, Berlin, 1991 | Zbl

[16] Chakravarty S., “The existence of an optimumsavings program”, Econometrica, 30 (1962), 178–187 | DOI | Zbl

[17] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl

[18] Khlopin D. V., Necessity of vanishing shadowprice in infinite horizon control problems, arXiv: 1207.5358

[19] Pickenhain S., “On adequate transversality conditions for infinite horizon optimal control problems – a famous example of Halkin”, Dynamic Systems, Economic Growth, and the Environment, Dynamic Modeling and Econometrics in Economics and Finance, 12, eds. Crespo Cuaresma J., Palokangas T., Tarasyev A., Springer, Berlin etc., 2010, 3–22 | DOI

[20] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–230 | DOI | MR

[21] Stern L. E., “Criteria of optimality in the infinite-time optimal control problem”, J. Optim. Theory Appl., 44:3 (1984), 497–508 | DOI | MR | Zbl

[22] Wachs A. O., Schochetman I. E., Smith R. L., “Average optimality in nonhomogeneous infinite horizon Markov decision processes”, Math. Oper. Res., 36:1 (2011), 147–164 | DOI | MR | Zbl

[23] Ye J. J., “Nonsmooth Maximum Principle for infinite-horizon problems”, J. Optim. Theory Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl