@article{VUU_2013_1_a4,
author = {L. I. Rodina and A. H. Hammady},
title = {The characteristics of attainability set connected with invariancy of control systems on the finite time interval},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {35--48},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/}
}
TY - JOUR AU - L. I. Rodina AU - A. H. Hammady TI - The characteristics of attainability set connected with invariancy of control systems on the finite time interval JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 35 EP - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/ LA - ru ID - VUU_2013_1_a4 ER -
%0 Journal Article %A L. I. Rodina %A A. H. Hammady %T The characteristics of attainability set connected with invariancy of control systems on the finite time interval %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2013 %P 35-48 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/ %G ru %F VUU_2013_1_a4
L. I. Rodina; A. H. Hammady. The characteristics of attainability set connected with invariancy of control systems on the finite time interval. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 35-48. http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/
[1] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288
[2] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 67–86
[3] Rodina L. I., “Statisticheskie kharakteristiki mnozhestva dostizhimosti i periodicheskie protsessy upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 2, 34–43
[4] Rodina L. I., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i statisticheski invariantnye mnozhestva upravlyaemykh sistem”, Trudy Matematicheskogo instituta im. V. A. Steklova, 278, 2012, 217–226
[5] Rodina L. I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izvestiya Instituta matematiki i informatiki UdGU, 2012, no. 2(40), 3–164
[6] Davydov A. A., Pastpes R., Petrenko I. A., “Optimalnoe raspredelenie vybrosa zagryazneniya v odnomernyi potok”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 30–35
[7] Dmitruk A. V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, 14, VNIISI, M., 1990, 26–42
[8] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.
[9] Panasenko E. A., Rodina L. I., Tonkov E. L., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177
[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl
[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR
[12] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2007, 324 pp.
[13] V. I. Gurman, I. P. Druzhinin (red.), Modeli prirodnykh sistem, Nauka, Novosibirsk, 1978, 224 pp.
[14] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999, 284 pp. | Zbl
[15] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | MR | Zbl
[16] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 768 pp.
[17] Perov A. I., “Neskolko zamechanii otnositelno differentsialnykh neravenstv”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1965, no. 4, 104–112 | MR | Zbl