The characteristics of attainability set connected with invariancy of control systems on the finite time interval
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 35-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the statistical characteristics of the attainability set $A(t,\sigma,X)$ of the control system which is parametrized by means of a topological dynamical system $(\Sigma,h^t).$ We obtain the lower estimates for characteristics connected with invariance of given set on a finite time interval. We also consider the following problem arising in many applications. Let numbers $\lambda_0\in (0,1]$ and $\vartheta>0$ are given. It is necessary to find the conditions which the control system and set $X$ should satisfy providing that for given $\sigma\in\Sigma$ relative frequency of containing of the attainability set $A(t,\sigma,X)$ in the given set $M$ on any interval of time length $\vartheta$ would be not less then $\lambda_0$. Let's notice, that the characteristic $\vartheta$ is assumed given depending on an applying problems. In particular, if control process is periodic, then $\vartheta$ is the period of the process. Results are illustrated by examples of the control systems which describe different models of population growth.
Keywords: control systems, dynamical systems, differential inclusions, statistically invariant sets.
@article{VUU_2013_1_a4,
     author = {L. I. Rodina and A. H. Hammady},
     title = {The characteristics of attainability set connected with invariancy of control systems on the finite time interval},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {35--48},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - A. H. Hammady
TI  - The characteristics of attainability set connected with invariancy of control systems on the finite time interval
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 35
EP  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/
LA  - ru
ID  - VUU_2013_1_a4
ER  - 
%0 Journal Article
%A L. I. Rodina
%A A. H. Hammady
%T The characteristics of attainability set connected with invariancy of control systems on the finite time interval
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 35-48
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/
%G ru
%F VUU_2013_1_a4
L. I. Rodina; A. H. Hammady. The characteristics of attainability set connected with invariancy of control systems on the finite time interval. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 35-48. http://geodesic.mathdoc.fr/item/VUU_2013_1_a4/

[1] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[2] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 67–86

[3] Rodina L. I., “Statisticheskie kharakteristiki mnozhestva dostizhimosti i periodicheskie protsessy upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 2, 34–43

[4] Rodina L. I., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i statisticheski invariantnye mnozhestva upravlyaemykh sistem”, Trudy Matematicheskogo instituta im. V. A. Steklova, 278, 2012, 217–226

[5] Rodina L. I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izvestiya Instituta matematiki i informatiki UdGU, 2012, no. 2(40), 3–164

[6] Davydov A. A., Pastpes R., Petrenko I. A., “Optimalnoe raspredelenie vybrosa zagryazneniya v odnomernyi potok”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 30–35

[7] Dmitruk A. V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, 14, VNIISI, M., 1990, 26–42

[8] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[9] Panasenko E. A., Rodina L. I., Tonkov E. L., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177

[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[12] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2007, 324 pp.

[13] V. I. Gurman, I. P. Druzhinin (red.), Modeli prirodnykh sistem, Nauka, Novosibirsk, 1978, 224 pp.

[14] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999, 284 pp. | Zbl

[15] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | MR | Zbl

[16] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 768 pp.

[17] Perov A. I., “Neskolko zamechanii otnositelno differentsialnykh neravenstv”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1965, no. 4, 104–112 | MR | Zbl