The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 29-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discrete Schrödinger operator on the graph, which is the Hamiltonian in the tight-binding approach of an electron in the system consisting of a quantum wire, and two embedded quantum dots. This operator describes the double-barrier resonant nanostructure, in which one of the barriers is a non-local potential. The essential and absolutely continuous spectra of this operator are described. We study the scattering problem in the stationary approach for two possible directions of particles propagation. The conditions of total reflection and total transmission are found.
Keywords: discrete Schrödinger operator, spectrum, the Lippmann–Schwinger scattering problem, quantum dot.
@article{VUU_2013_1_a3,
     author = {L. E. Morozova},
     title = {The scattering problem for a~discrete {Schr\"odinger} operator with the {\textquotedblleft}resonant{\textquotedblright} potential on the graph},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {29--34},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/}
}
TY  - JOUR
AU  - L. E. Morozova
TI  - The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 29
EP  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/
LA  - ru
ID  - VUU_2013_1_a3
ER  - 
%0 Journal Article
%A L. E. Morozova
%T The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 29-34
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/
%G ru
%F VUU_2013_1_a3
L. E. Morozova. The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/

[1] Orellana P. A., Domingulz-Adame F., Gomes I., Ladron de Guevara M. L., “Transport through a quantum wire a side quantum-dot array”, Phys. Rev. B, 67 (2004), 085321, 5 pp. | DOI

[2] Gores J., Goldhaber-Gordon D., Heemeyer S., Kastner M. A., “Fano resonances in electronic transport through a single-electron transistor”, Phys. Rev. B, 62:3 (2000), 2188–2195 | DOI

[3] Fuhrer A., Brusheim P., Ihn T., Sigrist M., Ensslin K., Wegscheider W., Bichler M., “Fano effect in a quantum-ring-quantum-dot system with tunable coupling”, Phys. Rev. B, 73 (2006), 205326, 9 pp. | DOI

[4] Chakrabarti A., “Fano resonance in discrete lattice models: Controlling lineshapes with impurities”, Phys. Letters A, 336:4–5 (2007), 507–512 | DOI

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, v. 1, Mir, M., 1977, 357 pp. | MR

[6] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrodinger operator with a perturbed periodic potential”, J. Phys. A: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[7] Tinyukova T. S., Chuburin Yu. P., “Kvaziurovni diskretnogo operatora Shredingera s ubyvayuschim potentsialom na grafe”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 104–113

[8] Baranova L. E., Chuburin Yu. P., “Kvaziurovni dvukhchastichnogo diskretnogo operatora Shredingera s malym potentsialom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 1, 35–46

[9] Chuburin Yu. P., “Ob odnom diskretnom operatore Shredingera na grafe”, Teoreticheskaya i matematicheskaya fizika, 165:1 (2010), 119–133 | DOI | Zbl

[10] Tinyukova T. S., “Uravnenie Lippmana–Shvingera dlya kvantovykh provolok”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 99–104

[11] Zakharev B. N., Novaya azbuka kvantovoi mekhaniki, Izd-vo UdGU, Izhevsk, 1997, 160 pp.