@article{VUU_2013_1_a3,
author = {L. E. Morozova},
title = {The scattering problem for a~discrete {Schr\"odinger} operator with the {\textquotedblleft}resonant{\textquotedblright} potential on the graph},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {29--34},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/}
}
TY - JOUR AU - L. E. Morozova TI - The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2013 SP - 29 EP - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/ LA - ru ID - VUU_2013_1_a3 ER -
%0 Journal Article %A L. E. Morozova %T The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2013 %P 29-34 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/ %G ru %F VUU_2013_1_a3
L. E. Morozova. The scattering problem for a discrete Schrödinger operator with the “resonant” potential on the graph. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VUU_2013_1_a3/
[1] Orellana P. A., Domingulz-Adame F., Gomes I., Ladron de Guevara M. L., “Transport through a quantum wire a side quantum-dot array”, Phys. Rev. B, 67 (2004), 085321, 5 pp. | DOI
[2] Gores J., Goldhaber-Gordon D., Heemeyer S., Kastner M. A., “Fano resonances in electronic transport through a single-electron transistor”, Phys. Rev. B, 62:3 (2000), 2188–2195 | DOI
[3] Fuhrer A., Brusheim P., Ihn T., Sigrist M., Ensslin K., Wegscheider W., Bichler M., “Fano effect in a quantum-ring-quantum-dot system with tunable coupling”, Phys. Rev. B, 73 (2006), 205326, 9 pp. | DOI
[4] Chakrabarti A., “Fano resonance in discrete lattice models: Controlling lineshapes with impurities”, Phys. Letters A, 336:4–5 (2007), 507–512 | DOI
[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, v. 1, Mir, M., 1977, 357 pp. | MR
[6] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrodinger operator with a perturbed periodic potential”, J. Phys. A: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl
[7] Tinyukova T. S., Chuburin Yu. P., “Kvaziurovni diskretnogo operatora Shredingera s ubyvayuschim potentsialom na grafe”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 104–113
[8] Baranova L. E., Chuburin Yu. P., “Kvaziurovni dvukhchastichnogo diskretnogo operatora Shredingera s malym potentsialom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 1, 35–46
[9] Chuburin Yu. P., “Ob odnom diskretnom operatore Shredingera na grafe”, Teoreticheskaya i matematicheskaya fizika, 165:1 (2010), 119–133 | DOI | Zbl
[10] Tinyukova T. S., “Uravnenie Lippmana–Shvingera dlya kvantovykh provolok”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 99–104
[11] Zakharev B. N., Novaya azbuka kvantovoi mekhaniki, Izd-vo UdGU, Izhevsk, 1997, 160 pp.