Some problems of the theory of linear equations
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 17-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			There are considered the structural, approximated and spectral properties of Fredholm operators of index $n$ and $(-n)$, acting between Banach spaces $B$ and $D$, where $D$ is isomorphic to the direct sum of $B$ and finite-dimensional space $E$ of dimension $n$. There is demonstrated the role of S. M. Nikol'skii theorem on Fredholm operator in the study of these properties as well as in the issue of solvability equations with boundary inequalities. For boundary value problems which are uniquely solvable, in the case of a separable Hilbert space $B$, based on Schmidt decomposition for a compact operator a scheme of discretization is proposed, and it allows application of an abstract version of Ryaben'kii–Filippov theorem on the relationship of approximation, stability and convergence.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
reconstructive modelling, factorization of linear operators, minimal set of cyclic vectors, equations with boundary inequalities.
Mots-clés : minimal rank perturbations
                    
                  
                
                
                Mots-clés : minimal rank perturbations
@article{VUU_2013_1_a2,
     author = {G. G. Islamov},
     title = {Some problems of the theory of linear equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {17--28},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/}
}
                      
                      
                    G. G. Islamov. Some problems of the theory of linear equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 17-28. http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/
