Some problems of the theory of linear equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 17-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are considered the structural, approximated and spectral properties of Fredholm operators of index $n$ and $(-n)$, acting between Banach spaces $B$ and $D$, where $D$ is isomorphic to the direct sum of $B$ and finite-dimensional space $E$ of dimension $n$. There is demonstrated the role of S. M. Nikol'skii theorem on Fredholm operator in the study of these properties as well as in the issue of solvability equations with boundary inequalities. For boundary value problems which are uniquely solvable, in the case of a separable Hilbert space $B$, based on Schmidt decomposition for a compact operator a scheme of discretization is proposed, and it allows application of an abstract version of Ryaben'kii–Filippov theorem on the relationship of approximation, stability and convergence.
Keywords: reconstructive modelling, factorization of linear operators, minimal set of cyclic vectors, equations with boundary inequalities.
Mots-clés : minimal rank perturbations
@article{VUU_2013_1_a2,
     author = {G. G. Islamov},
     title = {Some problems of the theory of linear equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {17--28},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - Some problems of the theory of linear equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 17
EP  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/
LA  - ru
ID  - VUU_2013_1_a2
ER  - 
%0 Journal Article
%A G. G. Islamov
%T Some problems of the theory of linear equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 17-28
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/
%G ru
%F VUU_2013_1_a2
G. G. Islamov. Some problems of the theory of linear equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 17-28. http://geodesic.mathdoc.fr/item/VUU_2013_1_a2/

[1] Nikolskii S. M., “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izvestiya AN SSSR. Seriya matem., 7:3 (1943), 147–166 | MR | Zbl

[2] Islamov G. G., “Fundamental branches in investigation of linear functional differential equations”, IEEE 17th International Conference on Industrial Engineering and Engineering Management (IE), 29–31 Oct. 2010, 1945–1949

[3] Islamov G. G., “Rol teoremy S. M. Nikolskogo o fredgolmovom operatore v stanovlenii i razvitii teorii funktsionalno-differentsialnykh uravnenii”, Sovremennye problemy analiza i prepodavaniya matematiki, Materialy Mezhdunar. nauch. konf., posvyasch. 105-letiyu akad. S. M. Nikolskogo (17–19 maya 2010 g., MGU, M.), 2010, 50–51

[4] Islamov G. G., “Otsenki minimalnogo ranga konechnomernykh vozmuschenii operatorov Grina”, Differentsialnye uravneniya, 25:9 (1989), 1496–1503 | MR | Zbl

[5] Islamov G. G., “O nekotorykh prilozheniyakh teorii abstraktnogo funktsionalno-differentsialnogo uravneniya. I”, Differentsialnye uravneniya, 25:11 (1989), 1872–1881 | MR | Zbl

[6] Islamov G. G., “O nekotorykh prilozheniyakh teorii abstraktnogo funktsionalno-differentsialnogo uravneniya. II”, Differentsialnye uravneniya, 26:2 (1990), 224–232 | MR | Zbl

[7] Islamov G. G., “Kriterii razreshimosti uravnenii s kraevymi neravenstvami”, Izvestiya Instituta matematiki i informatiki UdGU, 1994, no. 2, 3–24 | Zbl

[8] Islamov G. G., “Polnota kornevykh vektorov nëterovykh operatorov”, Izvestiya Instituta matematiki i informatiki UdGU, 2006, no. 3(37), 53–54

[9] Islamov G. G., “Ekstremalnye vozmuscheniya zamknutykh operatorov”, Izvestiya vuzov. Matematika, 1989, no. 1, 35–41 | MR | Zbl

[10] Islamov G. G., “Ob otsenke sverkhu spektralnogo radiusa”, Doklady AN SSSR, 322:5 (1992), 836–838 | MR | Zbl

[11] Mikhlin S. G., Kurs matematicheskoi fiziki, Lan, SPb., 2002, 576 pp.

[12] Timan A. F., Trofimov V. N., Vvedenie v teoriyu garmonicheskikh funktsii, Nauka, M., 1968, 208 pp. | MR

[13] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR

[14] Babenko K. I., Osnovy chislennogo analiza, NITs RKhD, M.–Izhevsk, 2002, 848 pp.

[15] Islamov G. G., Ekstremalnye vozmuscheniya lineinykh operatorov, Dis. $\dots$ d-ra fiz.-matem. nauk, IMM UrO RAN, Ekaterinburg, 1993, 255 pp.