Numerical methods of multibody mechanical system's dynamic equations integration, based on methods of direct integration of finite element method's dynamic equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 131-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article covers the basic principles of the linearization of dynamic equations for an arbitrary multibody mechanical system. General approaches to the formation of specialized numerical methods for integrating multibody systems are described, which are based on classical methods of finite-element method for direct integration of the dynamic equations. The method based on the known implicit Newmark method is considered. The calculation formulae are derived and a brief study on stability is conducted. In addition, the examples of test calculation are given, which are performed using the Newmark specialized method by means of bundled EULER software for dynamic analysis of multibody mechanical systems.
Keywords: multibody system, finite element method, stiff problem, system linearization, implicit numerical integration methods, Newmark's method.
@article{VUU_2013_1_a11,
     author = {A. A. Yudakov and V. G. Boikov},
     title = {Numerical methods of multibody mechanical system's dynamic equations integration, based on methods of direct integration of finite element method's dynamic equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {131--144},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a11/}
}
TY  - JOUR
AU  - A. A. Yudakov
AU  - V. G. Boikov
TI  - Numerical methods of multibody mechanical system's dynamic equations integration, based on methods of direct integration of finite element method's dynamic equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 131
EP  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a11/
LA  - ru
ID  - VUU_2013_1_a11
ER  - 
%0 Journal Article
%A A. A. Yudakov
%A V. G. Boikov
%T Numerical methods of multibody mechanical system's dynamic equations integration, based on methods of direct integration of finite element method's dynamic equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 131-144
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a11/
%G ru
%F VUU_2013_1_a11
A. A. Yudakov; V. G. Boikov. Numerical methods of multibody mechanical system's dynamic equations integration, based on methods of direct integration of finite element method's dynamic equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 131-144. http://geodesic.mathdoc.fr/item/VUU_2013_1_a11/

[1] Bate K., Vilson E., Chislennye metody analiza i metod konechnykh elementov, Stroiizdat, M., 1982, 448 pp.

[2] Obraztsov I. F., Savelev L. M., Khazanov Kh. S., Metod konechnykh elementov v zadachakh stroitelnoi mekhaniki letatelnykh apparatov, Vysshaya shkola, M., 1985, 392 pp. | Zbl

[3] Vittenburg I., Dinamika sistem tverdykh tel, Mir, M., 1980, 292 pp. | MR

[4] Mikheev G. V., Kompyuternoe modelirovanie dinamiki sistem absolyutno tverdykh i uprugikh tel, podverzhennykh malym deformatsiyam, Dis. $\dots$ kand. tekhn. nauk, Bryansk, 2004, 153 pp.

[5] Boikov V. G., Yudakov A. A., “Modelirovanie dinamiki sistemy tverdykh i uprugikh tel v programmnom komplekse EULER”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2011, no. 1, 42–52

[6] Yudakov A. A., “Obschie uravneniya dvizheniya uprugikh tel, osnovannye na metode konechnykh elementov i modeli Kreiga-Bemptona”, Vysokie tekhnologii, obrazovanie, promyshlennost, Cb. statei XI Mezhdunar. nauch.-prakt. konf. (SPbGU), v. 4, Izd-vo politekhnicheskogo un-ta, SPb., 2011, 135–142

[7] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.