A boundary value problem for a fourth order partial differential equation with the lowest term
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect $x$ and two times with respect to $t$.
Keywords: boundary value problem, a priori estimate, regular solvability, Fredholm integral equation of the second kind, resolvent, method of successive approximations.
@article{VUU_2013_1_a0,
     author = {D. Amanov and M. B. Murzambetova},
     title = {A boundary value problem for a~fourth order partial differential equation with the lowest term},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--10},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2013_1_a0/}
}
TY  - JOUR
AU  - D. Amanov
AU  - M. B. Murzambetova
TI  - A boundary value problem for a fourth order partial differential equation with the lowest term
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2013
SP  - 3
EP  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2013_1_a0/
LA  - ru
ID  - VUU_2013_1_a0
ER  - 
%0 Journal Article
%A D. Amanov
%A M. B. Murzambetova
%T A boundary value problem for a fourth order partial differential equation with the lowest term
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2013
%P 3-10
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2013_1_a0/
%G ru
%F VUU_2013_1_a0
D. Amanov; M. B. Murzambetova. A boundary value problem for a fourth order partial differential equation with the lowest term. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2013), pp. 3-10. http://geodesic.mathdoc.fr/item/VUU_2013_1_a0/

[1] Dzhuraev T. D., Sopuev A., K teorii differentsialnykh uravnenii v chastnykh proizvodnykh chetvertogo poryadka, Fan, Tashkent, 2000, 144 pp. | MR | Zbl

[2] Otarova Zh. A., Razreshimost i spektralnye svoistva kraevykh zadach dlya uravnenii smeshannogo tipa chetvertogo poryadka, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, ANRUz, Tashkent, 2009, 16 pp.

[3] Salimova G., “On a boundary value problem for a fourth order partial differential equation”, Proc. Inst. Math. Mech. Azerb. Acad. Sci., 25 (2006), 95–104 | MR | Zbl

[4] Baikuziev K. B., Kasimova M., “Smeshannaya zadacha dlya nelineinogo uravneniya chetvertogo poryadka, vyrozhdayuschegosya na granitse oblasti”, Izvestiya AN Uzb. SSR. Seriya fiz.-mat. nauk (Tashkent), 1968, no. 5, 7–12 | MR

[5] Karimov D. Kh., Kasimova M., “Smeshannaya zadacha dlya lineinogo uravneniya chetvertogo poryadka, vyrozhdayuschegosya na granitse oblasti”, Izvestiya AN Uzb. SSR. Seriya fiz.-mat. nauk (Tashkent), 1968, no. 2, 27–31 | MR | Zbl

[6] Meredov M. M., “O edinstvennosti resheniya kraevykh zadach dlya uravneniya smeshannogo tipa chetvertogo poryadka”, Izvestiya AN Turkmen. SSR. Seriya fiz.-tekh., khim. i geol. nauk (Ashkhabad), 1967, no. 4, 11–16 | MR

[7] Salakhitdinov M. S., Amanov D., “Razreshimost i spektralnye svoistva samosopryazhennykh zadach dlya uravneniya chetvertogo poryadka”, Sovremennye problemy matematicheskoi fiziki i informatsionnykh tekhnologii, Tr. mezhdunar. konf., posvyaschennoi 60-letiyu so dnya rozhdeniya Sh. A. Alimova, NUUz, Tashkent, 2005, 151–155

[8] Salakhitdinov M. S., Amanov D., “Razreshimost i spektralnye svoistva samosopryazhennoi zadachi dlya uravneniya chetvertogo poryadka”, UzMZh (Tashkent), 2005, no. 3, 72–77 | MR

[9] Amanov D., Yuldasheva A. V., “Razreshimost i spektralnye svoistva samosopryazhennoi zadachi dlya uravneniya chetvertogo poryadka”, UzMZh (Tashkent), 2007, no. 4, 3–8 | MR | Zbl

[10] Khudaverdiev K. I., Alieva A. G., “O suschestvovanii v malom klassicheskogo resheniya odnomernoi smeshannoi zadachi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva chetvertogo poryadka”, Vestnik Bakinskogo universiteta. Seriya fiz.-mat. nauk, 2009, no. 1, 5–17

[11] Yang Yang, Zhang Jihui, “Existence of infinitely many mountain pass solutions for some fourth-order boundary value problems with a parameter”, Nonlinear Analysis: Theory, Methods and Applications, 71:12 (2009), 6135–6143 | DOI | MR | Zbl

[12] Karaca Ilkay Yaslan, “On positive solutions for fourth-order boundary value problem with impulse”, Journal of Computational and Applied Mathematics, 225:2 (2009), 356–364 | DOI | MR | Zbl

[13] Khankhasaev V. N., “Pervaya kraevaya zadacha dlya nelineinogo vyrozhdayuschegosya uravneniya chetvertogo poryadka”, Vestn. Buryat. gos. un-ta, 2010, no. 9, 183–186

[14] Zhao Junfang, Wang Libo, Ge Weigao, “Necessary and sufficient conditions for the existence of positive solutions of fourth order multi-point boundary value problems”, Nonlinear Analysis: Theory, Methods and Applications, 72:2 (2010), 822–835 | DOI | MR | Zbl

[15] Mustafaev A. P., “Predstavlenie chastnykh reshenii sostavnogo uravneniya chetvertogo poryadka”, Estestvennye i tekhnicheskie nauki, 2010, no. 2, 51–53

[16] Runzhang Xu, Yacheng Liu, “Global existence and blow-up of solutions for generalized Pochhammer-Chree equations”, Acta Mathematica Scientia, 30:5 (2010), 1793–1807 | DOI | MR | Zbl