On free movement of puck on horizontal plane
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 125-139
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of a homogeneous direct cylinder of an arbitrary form (a puck) sliding on a horizontal surface under the action of dry friction forces. The surface contact spot of the cylinder coincides with its base. One of the central hypotheses in the work is the choice of a mathematical model of interaction between a small surface element of a puck and a plane. It is assumed, that the current effect is described by the Amonton–Coulomb's law of friction. In the present work the basic attention is given to the qualitative analysis of the equations of motion for systems, the one which allow to describe dynamics at small values of the system's kinetic energy (final dynamics). Qualitative properties of dynamics for arbitrary pucks are formulated and proved. We present examples illustrating the difference in final dynamics for pucks with round, centrosymmetrical and arbitrary bases on a rough surface.
Keywords:
dry friction, puck, final dynamics, stability.
Mots-clés : Amontons–Coulomb law
Mots-clés : Amontons–Coulomb law
@article{VUU_2012_4_a9,
author = {D. S. Burlakov and A. A. Seslavina},
title = {On free movement of puck on horizontal plane},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {125--139},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a9/}
}
TY - JOUR AU - D. S. Burlakov AU - A. A. Seslavina TI - On free movement of puck on horizontal plane JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 125 EP - 139 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2012_4_a9/ LA - ru ID - VUU_2012_4_a9 ER -
D. S. Burlakov; A. A. Seslavina. On free movement of puck on horizontal plane. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 125-139. http://geodesic.mathdoc.fr/item/VUU_2012_4_a9/