About an example of the attraction set construction with employment of Stone space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 108-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The extension construction of the abstract problem of attainability realized with employment of the Stone compactum (the space of ultrafilters in the traditional equipment) is considered. The questions connected with the structure of attraction sets are investigated; these attraction sets define possibilities for attainability of desired states in topological space under employment of asymptotic analogs of usual solutions. Constraints of asymptotic character are given. This constraints can be arising under the weakening of standard constraints used in control theory (the natural prototype of the investigated abstract problem is the problem about the construction of the asymptotic analog of the attainability domain for the control system under vanishingly small weakening of some constraints on the choice of the programmed control). Using the natural modification of Warga approach, we can introduce (along with precise solutions) so-called approximate solutions in the form of sequences of usual solutions satisfying the conditions (realizing in the totality “asymptotic constraints”) “with reinforcing exactness”. Sometimes, the employment of only such (sequential) approximate solutions can be insufficient. Nets or filters are required. The last objects are used as the basic type of (asymptotic in essence) solutions in this investigation under construction of attraction sets in the attainability problem with constraints of asymptotic character. And what is more, in these constructions, we can confine ourselves to the employment of ultrafilters. For a particular case, on this basis, the concrete structure of attraction set is established.
Keywords: attraction set, constraints of asymptotic character, ultrafilter.
@article{VUU_2012_4_a8,
     author = {A. G. Chentsov},
     title = {About an example of the attraction set construction with employment of {Stone} space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {108--124},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a8/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - About an example of the attraction set construction with employment of Stone space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 108
EP  - 124
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a8/
LA  - ru
ID  - VUU_2012_4_a8
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T About an example of the attraction set construction with employment of Stone space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 108-124
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a8/
%G ru
%F VUU_2012_4_a8
A. G. Chentsov. About an example of the attraction set construction with employment of Stone space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 108-124. http://geodesic.mathdoc.fr/item/VUU_2012_4_a8/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[4] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR | Zbl

[5] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, Inostrannaya literatura, M., 1959, 263–267

[6] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[7] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 268–293

[8] Bastrykov E. S., “O nekotorykh tochkakh rasshireniya Bella schetnogo diskretnogo prostranstva”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 3–6

[9] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “O tochkakh odnogo bikompaktnogo rasshireniya $\mathbb N$”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 10–17

[10] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 | MR

[11] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[12] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Izd-vo LKI, M., 2008, 368 pp. | MR

[13] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[14] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[15] Chentsov A. G., “Konstruirovanie operatsii predelnogo perekhoda s ispolzovaniem ultrafiltrov izmerimykh prostranstv”, Avtomatika i telemekhanika, 2007, no. 11, 208–222 | MR | Zbl

[16] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, UrGU, Sverdlovsk, 1980, 100 pp.

[17] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, UGTU–UPI, Ekaterinburg, 2008, 388 pp.

[18] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 113–142

[19] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 4, 2011, 293–311

[20] Chentsov A. G., “Rasshireniya abstraktnykh zadach o dostizhiosti: nesekventsialnaya versiya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 184–217

[21] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, UGTU–UPI, Ekaterinburg, 2010, 541 pp.

[22] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[23] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl