On one version of approximate permitting control calculation in a problem of approaching
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 94-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A stationary control system defined on a finite time interval in Euclidean space is considered. We discuss one of the main problems of control theory, which is a problem of approach of a control system and a set in a phase space at a fixed time. This problem is closely connected with key problems in control theory, for example, with a problem of optimal performance. That is why it is necessary to find effective algorithms for solving this task. Due to the complexity of this problem it is impossible to solve it analytically even for simple cases. The construction of approximate solutions considered in this paper is connected with the construction of integral funnel of the control system inverted in time. This work contains the description of one algorithm for the integral funnel construction which is a final approximation of a solvability set for a problem of approach. The procedure of finding solvability control of the approximate solution based on local control saving is described. Illustrating example of a mechanical control system is provided.
Keywords: approaching problem, control system, attainability set, integral funnel, control, inverse pendulum.
@article{VUU_2012_4_a7,
     author = {A. V. Ushakov},
     title = {On one version of approximate permitting control calculation in a~problem of approaching},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {94--107},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a7/}
}
TY  - JOUR
AU  - A. V. Ushakov
TI  - On one version of approximate permitting control calculation in a problem of approaching
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 94
EP  - 107
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a7/
LA  - ru
ID  - VUU_2012_4_a7
ER  - 
%0 Journal Article
%A A. V. Ushakov
%T On one version of approximate permitting control calculation in a problem of approaching
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 94-107
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a7/
%G ru
%F VUU_2012_4_a7
A. V. Ushakov. On one version of approximate permitting control calculation in a problem of approaching. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 94-107. http://geodesic.mathdoc.fr/item/VUU_2012_4_a7/

[1] Ushakov V. N., Matviichuk A. R., Ushakov A. V., “Approksimatsiya mnozhestv dostizhimosti i integralnykh voronok differentsialnykh vklyuchenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 4, 23–39

[2] Krasovskii N. N., Osnovnaya igrovaya zadacha navedeniya. Pogloschenie tseli. Ekstremalnaya strategiya, Lektsii po teorii upravleniya, 4, Uralskii gosudarstvennyi universitet, Sverdlovsk, 1970, 96 pp.

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[4] Kurzhanskii A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR

[5] Guseinov Kh. G., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikladnaya matematika i mekhanika, 62:2 (1998), 179–187 | MR

[6] Gusev M. I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s perekrestnymi svyazyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94

[7] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[8] Filippova T. F., “Postroenie mnogoznachnykh otsenok mnozhestv dostizhimosti nekotorykh nelineinykh dinamicheskikh sistem s impulsnym upravleniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 263–269

[9] Khalil Kh. K., Nelineinye sistemy, Institut kompyuternykh issledovanii, Izhevsk, 2009, 812 pp.