The discrete Schrödinger equation for a quantum waveguide
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 80-93
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. We prove that the eigenvalues and resonances arise for the small decreasing potentials near singularities of the non-perturbed Green function (boundary points of the subbands) and we find their asymptotic behavior. The scattering picture is described: the diffraction (i.e. the scattering mainly in the finite number of preferential directions) transforms into probability waves in time of the reflection and propagation in the considered quasi-1D system. The simple formulas for these probabilities are obtained near boundary points of the subbands (this corresponds to small velocities of the quantum particles) for the small potentials.
Keywords: discrete Schrödinger operator, quantum waveguide, eigenvalue, resonance
Mots-clés : transmission and reflection coefficients.
@article{VUU_2012_4_a6,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {The discrete {Schr\"odinger} equation for a~quantum waveguide},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {80--93},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a6/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - The discrete Schrödinger equation for a quantum waveguide
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 80
EP  - 93
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a6/
LA  - ru
ID  - VUU_2012_4_a6
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T The discrete Schrödinger equation for a quantum waveguide
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 80-93
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a6/
%G ru
%F VUU_2012_4_a6
T. S. Tinyukova; Yu. P. Chuburin. The discrete Schrödinger equation for a quantum waveguide. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 80-93. http://geodesic.mathdoc.fr/item/VUU_2012_4_a6/

[1] Tinyukova T. S., “Uravnenie Lippmana–Shvingera dlya kvantovykh provolok”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 99–104

[2] Tinyukova T. S., Chuburin Yu. P., “Kvaziurovni diskretnogo operatora Shredingera s ubyvayuschim potentsialom na grafe”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 104–113

[3] Nonoyama S., Nakamura A., Aoyagi Y., Sugano T., Okiji A., “Numerical study of the interference effects of electron waves scattered by impurities or slits in a quasi-one-dimensional system”, Phys. Rev. B, 47:4 (1993), 2423–2426 | DOI

[4] Herbut I. F., “Resonances in bent quantum wires”, J. Phys.: Condens. Matter., 5 (1993), L607–L611 | DOI

[5] Wimmer M., Scheid M., Richter K., Spin-polarized quantum transport in mesoscopic conductors: computational concepts and physical phenomena, 2008, arXiv: 0803.3705v1[cond-mat.mes-hall]

[6] Metalidis G., Bruno P., “Green's function technique for studying electron flow in two-dimensional mesoscopic samples”, Phys. Rev. B, 72 (2005), 235304 | DOI

[7] Souma S., Nicolic B. K., “Modulating unpolarized current in quantum spintronics: visibility of spin-interference effect in multichannel Aharonov–Casher mesoscopic rings”, Phys. Rev. B, 70 (2004), 195346–11 | DOI

[8] Ptitsyna N., Shipman S. P., A lattice model for resonance in open periodic wavequides, 2010, arXiv: 1101.0170v1[math-ph] | MR

[9] Tinyukova T. S., “Kvaziurovni diskretnogo operatora Shredingera dlya kvantovogo volnovoda”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 88–97

[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 357 pp. | MR

[11] Chuburin Yu. P., “Ob odnom diskretnom operatore Shredingera na grafe”, Teoreticheskaya i matematicheskaya fizika, 165:1 (2010), 119–133 | DOI | Zbl

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 428 pp. | MR

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1982, 446 pp. | MR

[14] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969, 395 pp. | MR

[15] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[16] Chuburin Yu. P., “O rasseyanii dlya operatora Shredingera v sluchae kristallicheskoi plenki”, Teoreticheskaya i matematicheskaya fizika, 72:4 (1987), 120–131 | MR