About the attainability set of control system without assumption of compactness of geometrical restrictions on admissible controls
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 68-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the conditions under which the control system $\dot x=f(t,x,u)$, $u\in U (t,x)$ together with closure of set of shifts (concerning time $t$) of control system possesses property of uniform local or uniform global attainability on the given time interval. We do not suppose that function $(t,x)\to U(t,x)$, setting geometrical restrictions on admissible controls $u(t,x)\in U(t,x)$, has convex compact images and we do not suppose that differential inclusion corresponding to control system has convex images.
Keywords: statistically weakly invariant sets, controlled systems, attainability set, integral funnel, differential inclusion.
@article{VUU_2012_4_a5,
     author = {L. I. Rodina and E. L. Tonkov},
     title = {About the attainability set of control system without assumption of compactness of geometrical restrictions on admissible controls},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {68--79},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a5/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - About the attainability set of control system without assumption of compactness of geometrical restrictions on admissible controls
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 68
EP  - 79
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a5/
LA  - ru
ID  - VUU_2012_4_a5
ER  - 
%0 Journal Article
%A L. I. Rodina
%A E. L. Tonkov
%T About the attainability set of control system without assumption of compactness of geometrical restrictions on admissible controls
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 68-79
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a5/
%G ru
%F VUU_2012_4_a5
L. I. Rodina; E. L. Tonkov. About the attainability set of control system without assumption of compactness of geometrical restrictions on admissible controls. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 68-79. http://geodesic.mathdoc.fr/item/VUU_2012_4_a5/

[1] Anosov D. V., Lektsii po lineinoi algebre, RKhD, M.–Izhevsk, 1999, 105 pp.

[2] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[3] Zhukovskii E. S., Panasenko E. A., “Ob odnoi metrike v prostranstve nepustykh zamnutykh podmnozhestv v $\mathbb R^n$”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 1, 15–25

[4] Panasenko E. A., Rodina L. I., Tonkov E. L., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i differentsialnye vklyucheniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 162–177

[5] Panasenko E. A., “Dinamicheskaya sistema sdvigov v prostranstve mnogoznachnykh funktsii s zamknutymi obrazami”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 2, 28–33

[6] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byull. In-ta matem. pri MGU, 2:5 (1940), 1–52

[7] Tonkov E. L., “Globalno upravlyaemye lineinye sistemy”, Itogi nauki i tekhniki. Sovremennaya matematika i eë prilozheniya, 23, 2005, 145–165

[8] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[9] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 67–86

[10] Panasenko E. A., Rodina L. I., Tonkov E. L., “Asimptoticheski ustoichivye statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 135–142

[11] Rodina L. I., “Statisticheski invariantnye mnozhestva upravlyaemykh sistem so sluchainymi parametrami”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 68–87

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[13] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl