Model of three dimensional double-diffusive convection with cells of an arbitrary shape
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 46-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors. For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
Mots-clés : double-diffusive convection, amplitude equation
Keywords: multiple-scale method.
@article{VUU_2012_4_a3,
     author = {S. B. Kozitskii},
     title = {Model of three dimensional double-diffusive convection with cells of an arbitrary shape},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {46--61},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/}
}
TY  - JOUR
AU  - S. B. Kozitskii
TI  - Model of three dimensional double-diffusive convection with cells of an arbitrary shape
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 46
EP  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/
LA  - ru
ID  - VUU_2012_4_a3
ER  - 
%0 Journal Article
%A S. B. Kozitskii
%T Model of three dimensional double-diffusive convection with cells of an arbitrary shape
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 46-61
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/
%G ru
%F VUU_2012_4_a3
S. B. Kozitskii. Model of three dimensional double-diffusive convection with cells of an arbitrary shape. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 46-61. http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/

[1] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.

[2] Khappert G., Terner Dzh., “Konvektsiya, obuslovlennaya dvoinoi diffuziei”, Sovremennaya gidrodinamika. Uspekhi i problemy, sb., Mir, M., 1984, 413–453

[3] Kozitskiy S. B., “Fine structure generation in double-diffusive system”, Phys. Rev. E, 72:5 (2005), 056309-1–056309-6 | DOI

[4] Stommel H., Arons A. B., Blanchard D., “An oceanographical curiosity: the perpetual salt fountain”, Deep-Sea Res., 3 (1956), 152–153 | DOI

[5] Knobloch E., Moore D. R., Toomre J.,Weiss N. O., “Transitions to chaos in two-dimensional double-diffusive convection”, J. Fluid Mech., 166 (1986), 409–448 | DOI | MR | Zbl

[6] Meca E., Mercader I., Batiste O., Rami'rez-Piscina L., “Blue sky catastrophe in double-diffusive convection”, Phys. Rev. Lett., 92 (2004), 234501-1–234501-4 | DOI

[7] Newell A. C., Whitehead J. A., “Finite bandwidth, finite amplitude convection”, J. Fluid Mech., 38 (1968), 279–303 | DOI

[8] Zippelius A., Siggia E. D., “Stability of final amplitude convection”, Phys. Fluids, 26 (1983), 2905–2915 | DOI | Zbl

[9] Bretherton C. S., Spiegel E. A., “Intermittency through modulational instability”, Phys. Lett. A, 96 (1983), 152–156 | DOI

[10] Kozitskii S. B., “Amplitudnye uravneniya dlya sistemy s termokhalinnoi konvektsiei”, PMTF, 41:2 (2000), 56–66 | MR

[11] Balmforth N. J., Biello J. A., “Double diffusive instability in a tall thin slot”, J. Fluid Mech., 375 (1998), 203–233 | DOI | MR | Zbl

[12] Kozitskii S. B., “Amplitudnye uravneniya dlya trekhmernoi bidiffuzionnoi konvektsii v okrestnosti tochek bifurkatsii Khopfa”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 46–60

[13] Kozitskii S. B., “Amplitudnye uravneniya dlya trekhmernoi bidiffuzionnoi valikovoi konvektsii s yacheikami proizvolnoi shiriny v okrestnosti tochek bifurkatsii Khopfa”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 4, 13–24

[14] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 736 pp. | MR

[15] Weiss N. O., “Convection in an imposed magnetic field. Part 1. The development of nonlinear convection”, J. Fluid Mech., 108 (1981), 247–272 | DOI | Zbl

[16] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp. | MR

[17] Cooke K. L., “Differential difference equations and nonlinear initial-boundary-value problems for linear hyperbolic partial differential equations”, J. Math. Anal. and Appl., 24 (1968), 372–387 | DOI | MR | Zbl

[18] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl