Keywords: multiple-scale method.
@article{VUU_2012_4_a3,
author = {S. B. Kozitskii},
title = {Model of three dimensional double-diffusive convection with cells of an arbitrary shape},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {46--61},
year = {2012},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/}
}
TY - JOUR AU - S. B. Kozitskii TI - Model of three dimensional double-diffusive convection with cells of an arbitrary shape JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 46 EP - 61 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/ LA - ru ID - VUU_2012_4_a3 ER -
%0 Journal Article %A S. B. Kozitskii %T Model of three dimensional double-diffusive convection with cells of an arbitrary shape %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2012 %P 46-61 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/ %G ru %F VUU_2012_4_a3
S. B. Kozitskii. Model of three dimensional double-diffusive convection with cells of an arbitrary shape. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 46-61. http://geodesic.mathdoc.fr/item/VUU_2012_4_a3/
[1] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.
[2] Khappert G., Terner Dzh., “Konvektsiya, obuslovlennaya dvoinoi diffuziei”, Sovremennaya gidrodinamika. Uspekhi i problemy, sb., Mir, M., 1984, 413–453
[3] Kozitskiy S. B., “Fine structure generation in double-diffusive system”, Phys. Rev. E, 72:5 (2005), 056309-1–056309-6 | DOI
[4] Stommel H., Arons A. B., Blanchard D., “An oceanographical curiosity: the perpetual salt fountain”, Deep-Sea Res., 3 (1956), 152–153 | DOI
[5] Knobloch E., Moore D. R., Toomre J.,Weiss N. O., “Transitions to chaos in two-dimensional double-diffusive convection”, J. Fluid Mech., 166 (1986), 409–448 | DOI | MR | Zbl
[6] Meca E., Mercader I., Batiste O., Rami'rez-Piscina L., “Blue sky catastrophe in double-diffusive convection”, Phys. Rev. Lett., 92 (2004), 234501-1–234501-4 | DOI
[7] Newell A. C., Whitehead J. A., “Finite bandwidth, finite amplitude convection”, J. Fluid Mech., 38 (1968), 279–303 | DOI
[8] Zippelius A., Siggia E. D., “Stability of final amplitude convection”, Phys. Fluids, 26 (1983), 2905–2915 | DOI | Zbl
[9] Bretherton C. S., Spiegel E. A., “Intermittency through modulational instability”, Phys. Lett. A, 96 (1983), 152–156 | DOI
[10] Kozitskii S. B., “Amplitudnye uravneniya dlya sistemy s termokhalinnoi konvektsiei”, PMTF, 41:2 (2000), 56–66 | MR
[11] Balmforth N. J., Biello J. A., “Double diffusive instability in a tall thin slot”, J. Fluid Mech., 375 (1998), 203–233 | DOI | MR | Zbl
[12] Kozitskii S. B., “Amplitudnye uravneniya dlya trekhmernoi bidiffuzionnoi konvektsii v okrestnosti tochek bifurkatsii Khopfa”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 46–60
[13] Kozitskii S. B., “Amplitudnye uravneniya dlya trekhmernoi bidiffuzionnoi valikovoi konvektsii s yacheikami proizvolnoi shiriny v okrestnosti tochek bifurkatsii Khopfa”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 4, 13–24
[14] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 736 pp. | MR
[15] Weiss N. O., “Convection in an imposed magnetic field. Part 1. The development of nonlinear convection”, J. Fluid Mech., 108 (1981), 247–272 | DOI | Zbl
[16] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp. | MR
[17] Cooke K. L., “Differential difference equations and nonlinear initial-boundary-value problems for linear hyperbolic partial differential equations”, J. Math. Anal. and Appl., 24 (1968), 372–387 | DOI | MR | Zbl
[18] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl