Large-eddy simulation of wall-bounded turbulent flows
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 156-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various approaches to the numerical simulation of wall-bounded turbulent flows have been considered. Turbulence models have been assembled to allow equal proper description of the core-flow vortex parameters as well as local friction coefficient in near-wall domain. Different modifications and combinations of turbulence models have been applied, namely, RANS-based low-Reynolds models, standard LES approach and modified DES models. Testing calculations have been carried out for the flat plate flow and duct flow. The comparison of achieved results with known experimental and numerical data has been shown through the local friction coefficient, vorticity magnitude and distribution of velocity versus distance to the wall.
Keywords: large-eddy simulation, wall-bounded turbulent flows, detached eddy simulation.
@article{VUU_2012_4_a12,
     author = {A. A. Shaklein and A. I. Karpov},
     title = {Large-eddy simulation of wall-bounded turbulent flows},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {156--163},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a12/}
}
TY  - JOUR
AU  - A. A. Shaklein
AU  - A. I. Karpov
TI  - Large-eddy simulation of wall-bounded turbulent flows
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 156
EP  - 163
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a12/
LA  - ru
ID  - VUU_2012_4_a12
ER  - 
%0 Journal Article
%A A. A. Shaklein
%A A. I. Karpov
%T Large-eddy simulation of wall-bounded turbulent flows
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 156-163
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a12/
%G ru
%F VUU_2012_4_a12
A. A. Shaklein; A. I. Karpov. Large-eddy simulation of wall-bounded turbulent flows. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 156-163. http://geodesic.mathdoc.fr/item/VUU_2012_4_a12/

[1] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008, 368 pp.

[2] Volkov K. N., Emelyanov V. N., “Metod modelirovaniya krupnykh vikhrei v prilozhenii k problemam vnutrennei gazodinamiki RDTT”, Khimicheskaya fizika i mezoskopiya, 8:2 (2006), 198–208

[3] Bulgakov V. K., Lipanov A. M., Vilyunov V. N., Karpov A. I., “O mekhanizme otritsatelnoi erozii pri gorenii tverdykh topliv”, Fizika goreniya i vzryva, 25:4 (1989), 32–35 | MR

[4] Bulgakov V. K., Karpov A. I., Lipanov A. M., “Vliyanie konfiguratsii obduvayuschego potoka na skorost goreniya tverdogo topliva”, Doklady AN SSSR, 312:2 (1990), 391–393

[5] Shumikhin A. A., Karpov A. I., Korepanov M. A., Novozhilov V. B., “Chislennoe issledovanie vozdeistviya tonkoraspylënnoi vody na turbulentnoe diffuzionnoe plamya”, Khimicheskaya fizika i mezoskopiya, 14:3 (2012), 391–400

[6] Strelets M., “Detached-eddy simulation of massively separated flows”, 39th AIAA Aerosp. Sci., Proc. Meet. and Exhib., Reno, 2001, AIAA 2001–0879, 1–18

[7] Davidson L., Peng S.-H., “A hybrid LES-RANS model based on a one-equation SGS model and a two-equation $k$-$\omega$ model”, Turb. and Shear Flow Phenomena, Proc. Int. Symp. KTH, v. 2, Stockholm, 2001, 175–180

[8] Menter F. R., Kuntz M., Langtry R., “Ten years of industrial experience with the SST turbulence model”, Turb., Heat and Mass Transf., 4 (2003), 625–632

[9] Spalart P. R., Deck S., Shur M. L., Squires K. D., Strelets M. Kh., Travin A., “A new version of detatched eddy simulation, resistant to ambiguous grid densities”, Theor. Comp. Fluid Dyn., 20:3 (2006), 181–195 | DOI | Zbl

[10] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI

[11] Jasak H., Error analysis and estimation for the finite volume method with applications to fluid flows, Diss. $\dots$ Doctor of Phylosophy, Imperial College, London, 1996, 394 pp.

[12] Issa R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comp. Phys., 62 (1985), 40–65 | DOI | MR

[13] Karrhorm F. P., Numerical modelling of diesel spray injection, turbulence interaction and combustion, Diss. $\dots$ Doctor of Phylosophy, Chalmers University of Technology, Goteborg, 2008, 86 pp.

[14] Sweby P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. on Num. Analysis, 21:5 (1984), 995–1011 | DOI | MR | Zbl

[15] Wieghardt K., Tillmann W., On the turbulent friction layer for rising pressure, NACA TM-1314, 1951, 47 pp.

[16] Moser R. D., Kim J., Mansour N. N., “Direct numerical simulation of turbulent channel flow up to $Re_\tau=590$”, Phys. of Fluids, 11:4 (1999), 943–945 | DOI | Zbl

[17] Villiers E., The potential of large eddy simulation for the modelling of wall bounded flows, Diss. $\dots$ Doctor of Phylosophy, Imperial College, London, 2006, 351 pp.

[18] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl