Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 146-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study the stability of a spherical shell rolling on a horizontal plane with Lagrange's gyroscope inside. A linear stability analysis is made for the upper and lower position of a top. A bifurcation diagram of the system is constructed. The trajectories of the contact point for different values of the integrals of motion are constructed and analyzed.
Keywords: rolling motion, stability, Lagrange’s gyroscope, bifurcational diagram.
@article{VUU_2012_4_a11,
     author = {E. N. Pivovarova and T. B. Ivanova},
     title = {Stability analysis of periodic solutions in the problem of the rolling of a~ball with a~pendulum},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {146--155},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a11/}
}
TY  - JOUR
AU  - E. N. Pivovarova
AU  - T. B. Ivanova
TI  - Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 146
EP  - 155
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a11/
LA  - ru
ID  - VUU_2012_4_a11
ER  - 
%0 Journal Article
%A E. N. Pivovarova
%A T. B. Ivanova
%T Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 146-155
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a11/
%G ru
%F VUU_2012_4_a11
E. N. Pivovarova; T. B. Ivanova. Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 146-155. http://geodesic.mathdoc.fr/item/VUU_2012_4_a11/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Obobschenie preobrazovaniya Chaplygina i yavnoe integrirovanie sharovogo podvesa”, Nelineinaya dinamika, 7:2 (2011), 313–338

[2] Borisov A. V., Mamaev I. S., “Dve negolonomnye integriruemye svyazki tverdykh tel”, Nelineinaya dinamika, 7:3 (2011), 559–568

[3] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: gamiltonovy metody, integriruemost, khaos, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 576 pp. | MR

[4] Borisov A. V., Mamaev I. S., Ivanova T. B., “Ustoichivost zhidkogo samogravitiruyuschego ellipticheskogo tsilindra s vnutrennim vrascheniem”, Nelineinaya dinamika, 6:4 (2010), 807–822

[5] Chaplygin S. A., “O nekotorom vozmozhnom obobschenii teoremy ploschadei s primeneniem k zadache o katanii sharov”: Chaplygin S. A., Sbor. soch., v. 1, GITTL, M.–L., 1948, 26–56

[6] Alves J., Dias J., “Design and control of a spherical mobile robot”, J. Systems and Control Engineering, 217 (2003), 457–467

[7] Camicia C., Conticelli F., Bicchi A., “Nonholonimic kinematics and dynamics of the sphericle”, Proc. of the 2000 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems, 2000, 805–810 | DOI