On uniform continuous dependence of solution of Cauchy problem on parameter
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 22-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter $\mu\in\mathcal M$ of solution $x(t,t_0,\mu)$ of a $n$-dimensional Cauchy problem $\frac{dx}{dt}=f(t,x,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $x(t_0)=x^0$ one requires that the family $\{f(t,x,\cdot)\}_{(t,x)}$ is equicontinuous, then the dependence of $x(t,t_0,\mu)$ on parameter $\mu$ in an open $\mathcal M$ is uniformly continuous. Analogous result for a linear $n\times n$-dimensional Cauchy problem $\frac{dX}{dt}=A(t,\mu)X+\Phi(t,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $X(t_0,\mu)=X^0(\mu)$ is valid under the assumption that the integrals $\int_\mathcal I\|A(t,\mu_1)-A(t,\mu_2)\|\,dt $ and $\int_\mathcal I\|\Phi(t,\mu_1)-\Phi(t,\mu_2)\|\,dt$ are uniformly arbitrarily small, provided that $\|\mu_1-\mu_2\|$, $\mu_1,\mu_2\in\mathcal M$, is sufficiently small.
Keywords: uniformly continuity, equipower continuity.
@article{VUU_2012_4_a1,
     author = {V. Ya. Derr},
     title = {On uniform continuous dependence of solution of {Cauchy} problem on parameter},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {22--29},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/}
}
TY  - JOUR
AU  - V. Ya. Derr
TI  - On uniform continuous dependence of solution of Cauchy problem on parameter
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 22
EP  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/
LA  - ru
ID  - VUU_2012_4_a1
ER  - 
%0 Journal Article
%A V. Ya. Derr
%T On uniform continuous dependence of solution of Cauchy problem on parameter
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 22-29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/
%G ru
%F VUU_2012_4_a1
V. Ya. Derr. On uniform continuous dependence of solution of Cauchy problem on parameter. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 22-29. http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/