On uniform continuous dependence of solution of Cauchy problem on parameter
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 22-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter $\mu\in\mathcal M$ of solution $x(t,t_0,\mu)$ of a $n$-dimensional Cauchy problem $\frac{dx}{dt}=f(t,x,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $x(t_0)=x^0$ one requires that the family $\{f(t,x,\cdot)\}_{(t,x)}$ is equicontinuous, then the dependence of $x(t,t_0,\mu)$ on parameter $\mu$ in an open $\mathcal M$ is uniformly continuous. Analogous result for a linear $n\times n$-dimensional Cauchy problem $\frac{dX}{dt}=A(t,\mu)X+\Phi(t,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $X(t_0,\mu)=X^0(\mu)$ is valid under the assumption that the integrals $\int_\mathcal I\|A(t,\mu_1)-A(t,\mu_2)\|\,dt $ and $\int_\mathcal I\|\Phi(t,\mu_1)-\Phi(t,\mu_2)\|\,dt$ are uniformly arbitrarily small, provided that $\|\mu_1-\mu_2\|$, $\mu_1,\mu_2\in\mathcal M$, is sufficiently small.
Keywords:
uniformly continuity, equipower continuity.
@article{VUU_2012_4_a1,
author = {V. Ya. Derr},
title = {On uniform continuous dependence of solution of {Cauchy} problem on parameter},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {22--29},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/}
}
TY - JOUR AU - V. Ya. Derr TI - On uniform continuous dependence of solution of Cauchy problem on parameter JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 22 EP - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/ LA - ru ID - VUU_2012_4_a1 ER -
V. Ya. Derr. On uniform continuous dependence of solution of Cauchy problem on parameter. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 22-29. http://geodesic.mathdoc.fr/item/VUU_2012_4_a1/