Recurrent and almost recurrent multivalued maps and their selections.~II
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 3-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings $\mathbb R\ni t\mapsto F(t)\in\operatorname{comp}U$ with nonempty compact sets $F(t)$ in a complete metric space $U$. The set $\operatorname{comp}U$ is equipped with the Hausdorff metric $\mathrm{dist}$. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space $(\operatorname{comp}U,\mathrm{dist})$. It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings $\mathbb R\ni t\mapsto F(t)$ with the sets $F(t)$ consisting of a finite number of points (the number depends on the $t\in\mathbb R$). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping $t\mapsto F(t)$ with sets $F(t)$ consisting of at most $n$ points (where $n\in\mathbb N$) has a recurrent selection. If the sets $F(t)$ of a multivalued recurrent (almost recurrent) mapping $t\mapsto F(t)$ consist of $n$ points for all $t\in\mathbb R$, then all $n$ continuous selections of the map $F$ are recurrent (almost recurrent).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
recurrent function, selection, multivalued mapping.
                    
                  
                
                
                @article{VUU_2012_4_a0,
     author = {L. I. Danilov},
     title = {Recurrent and almost recurrent multivalued maps and their {selections.~II}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--21},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/}
}
                      
                      
                    TY - JOUR AU - L. I. Danilov TI - Recurrent and almost recurrent multivalued maps and their selections.~II JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 3 EP - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/ LA - ru ID - VUU_2012_4_a0 ER -
L. I. Danilov. Recurrent and almost recurrent multivalued maps and their selections.~II. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 3-21. http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/
