Recurrent and almost recurrent multivalued maps and their selections. II
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings $\mathbb R\ni t\mapsto F(t)\in\operatorname{comp}U$ with nonempty compact sets $F(t)$ in a complete metric space $U$. The set $\operatorname{comp}U$ is equipped with the Hausdorff metric $\mathrm{dist}$. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space $(\operatorname{comp}U,\mathrm{dist})$. It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings $\mathbb R\ni t\mapsto F(t)$ with the sets $F(t)$ consisting of a finite number of points (the number depends on the $t\in\mathbb R$). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping $t\mapsto F(t)$ with sets $F(t)$ consisting of at most $n$ points (where $n\in\mathbb N$) has a recurrent selection. If the sets $F(t)$ of a multivalued recurrent (almost recurrent) mapping $t\mapsto F(t)$ consist of $n$ points for all $t\in\mathbb R$, then all $n$ continuous selections of the map $F$ are recurrent (almost recurrent).
Keywords: recurrent function, selection, multivalued mapping.
@article{VUU_2012_4_a0,
     author = {L. I. Danilov},
     title = {Recurrent and almost recurrent multivalued maps and their {selections.~II}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--21},
     year = {2012},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Recurrent and almost recurrent multivalued maps and their selections. II
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 3
EP  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/
LA  - ru
ID  - VUU_2012_4_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Recurrent and almost recurrent multivalued maps and their selections. II
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 3-21
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/
%G ru
%F VUU_2012_4_a0
L. I. Danilov. Recurrent and almost recurrent multivalued maps and their selections. II. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2012), pp. 3-21. http://geodesic.mathdoc.fr/item/VUU_2012_4_a0/

[1] Michael E., “Continuous selections. I”, Ann. Math., 63:2 (1956), 361–381 | DOI | MR

[2] Kikuchi N., Tomita Y., “On the absolute continuity of multi-functions and orientor fields”, Funkcialaj Ekvacioj, 14 (1971), 161–170 | MR | Zbl

[3] Hermes H., “On continuous and measurable selections and the existence of solutions of generalized differential equations”, Proc. Amer. Math. Soc., 29:3 (1971), 535–542 | DOI | MR | Zbl

[4] Danilov L. I., “Rekurrentnye i pochti rekurrentnye mnogoznachnye otobrazheniya i ikh secheniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 19–51

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2004, 456 pp.

[6] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 151–242 | MR | Zbl

[7] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp. | MR

[8] Birkgof Dzh. D., Dinamicheskie sistemy, Udmurtskii universitet, Izhevsk, 1999, 408 pp. | Zbl

[9] Irisov A. E., Tonkov E. L., “Dostatochnye usloviya optimalnosti rekurrentnykh po Birkgofu dvizhenii differentsialnogo vklyucheniya”, Vestnik Udmurtskogo universiteta. Matematika, 2005, no. 1, 59–74

[10] Panasenko E. A., “O suschestvovanii rekurrentnykh i pochti periodicheskikh reshenii differentsialnogo vklyucheniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 42–57

[11] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU (Izhevsk), 1993, no. 1, 16–78 | Zbl

[12] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982, 271 pp. | MR | Zbl