On detachment conditions of a top on an absolutely rough support
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 103-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical problem about the motion of a heavy symmetric rigid body (top) with a fixed point on the horizontal plane is discussed. Due to the unilateral nature of the contact, detachments (jumps) are possible under certain conditions. We know two scenarios of detachment related to changing the sign of the normal reaction or the sign of the normal acceleration, and the mismatch of these conditions leads to a paradox. To determine the nature of paradoxes an example of the pendulum (rod) within the limitations of the real coefficient of friction was studied in detail. We showed that in the case of the first type of the paradox (detachment is impossible and contact is impossible) the body begins to slide on the support. In the case of the paradox of the second type (detachment is possible and contact is possible) contact is retained up to the sign change of the normal reaction, and then at the detachment the normal acceleration is non-zero.
Mots-clés : friction, Lagrange top, paradox
Keywords: detachment.
@article{VUU_2012_3_a9,
     author = {A. P. Ivanov and N. D. Shuvalov and T. B. Ivanova},
     title = {On detachment conditions of a~top on an absolutely rough support},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {103--113},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a9/}
}
TY  - JOUR
AU  - A. P. Ivanov
AU  - N. D. Shuvalov
AU  - T. B. Ivanova
TI  - On detachment conditions of a top on an absolutely rough support
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 103
EP  - 113
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a9/
LA  - ru
ID  - VUU_2012_3_a9
ER  - 
%0 Journal Article
%A A. P. Ivanov
%A N. D. Shuvalov
%A T. B. Ivanova
%T On detachment conditions of a top on an absolutely rough support
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 103-113
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a9/
%G ru
%F VUU_2012_3_a9
A. P. Ivanov; N. D. Shuvalov; T. B. Ivanova. On detachment conditions of a top on an absolutely rough support. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 103-113. http://geodesic.mathdoc.fr/item/VUU_2012_3_a9/

[1] Routh E., Advanced dynamics of a system of rigid bodies, Dover Phoenix Edition, New York, 2005 | MR

[2] Ivanov A. P., “On detachment conditions in the problem on the motion of a rigid body on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 355–368 | DOI | MR | Zbl

[3] Deryabin M. V., Kozlov V. V., “A theory of systems with unilateral constraints”, Prikl. Mat. Mekh., 59:4 (1995), 531–539 | MR | Zbl

[4] Ivanov A. P., “The conditions for the unique solvability of the equations of the dynamics of systems with friction”, Prikl. Mat. Mekh., 72:4 (2008), 531–546 | MR | Zbl

[5] Ivanov A. P., “Extremum property of constraint reactions”, Prikl. Mat. Mekh., 76:2 (2012), 197–-213 | Zbl

[6] Borisov A. V., Mamaev I. S., Dynamics of the rigid body, RCD, Moscow–Izhevsk, 2001, 384 pp. | MR | Zbl