The transformation of ultrafilters and their application in constructions of attraction sets
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 85-102
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ultrafilters of widely interpreted measurable spaces (including the spaces with semialgebras and algebras of sets) are considered. The transformation having the sense of ultrafilter extension with semialgebra of sets onto algebra generated by this semialgebra is investigated. It is established that given transformation is a homeomorphism in the sense of the natural equipments of ultrafilter spaces realizing standard compactums (in the case of measurable spaces with algebra of sets, the space of Stone representation is realized). Questions connected with representation of attraction sets in abstract attainability problem with constraints of asymptotic character are investigated. These questions are connected with the compactifications in the class of ultrafilters of measurable spaces with semialgebras of sets and some analogs for ultrafilters of $\pi$-systems.
Keywords: attraction set, constraints of asymptotic character, ultrafilter.
@article{VUU_2012_3_a8,
     author = {A. G. Chentsov},
     title = {The transformation of ultrafilters and their application in constructions of attraction sets},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {85--102},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a8/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The transformation of ultrafilters and their application in constructions of attraction sets
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 85
EP  - 102
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a8/
LA  - ru
ID  - VUU_2012_3_a8
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The transformation of ultrafilters and their application in constructions of attraction sets
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 85-102
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a8/
%G ru
%F VUU_2012_3_a8
A. G. Chentsov. The transformation of ultrafilters and their application in constructions of attraction sets. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 85-102. http://geodesic.mathdoc.fr/item/VUU_2012_3_a8/

[1] Warga J., Optimal'noe upravlenie differentsial'nymi i funktsional'nymi uravneniyami (Optimal control of differential and functional equations), Nauka, Moscow, 1977, 624 pp. | MR

[2] Daffin R. J., “Infinite programs”, Linear inequalities and related topics, 1959, 263–267

[3] Gol'shtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya (Duality theory in mathematical programming and its applications), Nauka, Moscow, 1971, 351 pp. | MR

[4] Gamkrelidze R. V., Osnovy optimal'nogo upravleniya (Foundations of optimal control), Izd. Tbilis. Univ., Tbilisi, 1975, 229 pp. | MR

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem (Theory of motion control), Nauka, Moscow, 1968, 475 pp. | MR

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial'nye igry (Positional differential games), Nauka, Moscow, 1968, 456 pp. | MR | Zbl

[7] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezul'tata (Control of dynamic systems. Problem of the minimum guaranteed result), Nauka, Moscow, 1985, 518 pp. | MR

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya (Optimization guarantees in control problems), Nauka, Moscow, 1981, 287 pp. | MR | Zbl

[9] Kuratovskii K., Mostovskii A., Teoriya mnozhestv (Theory of sets), Mir, Moscow, 1970, 416 pp. | MR

[10] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov (Theory of stochastic processes), Fizmatlit, Moscow, 2005, 402 pp.

[11] Neve J., Matematicheskie osnovy teorii veroyatnostey (Mathematical foundations of probability theory), Mir, Moscow, 1969, 309 pp. | MR | Zbl

[12] Arkhangel'skii A. V., “Compactness”, General Topology–2, Itogi Nauki i Tekhniki, Sovrem. Probl. Mat. Fund. Naprav., 50, VINITI, Moscow, 1989, 5–128 | MR | Zbl

[13] Burbaki N., Obshchaya topologiya. Osnovnye struktury (General topology. The basic structures), Nauka, Moscow, 1968, 272 pp. | MR

[14] Chentsov A. G., “Filters and ultrafilters in the constructions of attraction sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2011, no. 1, 113–142

[15] Engelking R., Obshchaya topologiya (General topology), Mir, Moscow, 1986, 751 pp. | MR

[16] Chentsov A. G., Morina S. I., Extensions and Relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[17] Chentsov A. G., Elementy konechno-additivnoi teorii mery (Elements of a finitely additive measure theory), v. II, USTU–UPI, Yekaterinburg, 2010, 541 pp.

[18] Aleksandryan R. A., Mirzakhanyan E. A., Obshchaya topologiya (General topology), Vysshaya shkola, Moscow, 1979, 336 pp. | Zbl

[19] Chentsov A. G., “Extension of abstract problems of attainability: nonsequential versich”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 13, no. 2, Yekaterinburg, 2007, 184–217

[20] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in problems with constraints of asymptotic character”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 1, Yekaterinburg, 2011, 268–293

[21] Bastrykov E. S., “About of Bell extension points of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2009, no. 4, 3–6

[22] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $\mathbb N$”, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2010, no. 3, 10–17

[23] Golovastov R. A., “About one compactifications of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 2011, no. 1, 14–19