Keywords: piecewise polynomial function, finite element method.
@article{VUU_2012_3_a5,
author = {N. V. Latypova},
title = {Independence of interpolation error estimates by fifth-degree polynomials on angles in a~triangle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {53--64},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a5/}
}
TY - JOUR AU - N. V. Latypova TI - Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 53 EP - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2012_3_a5/ LA - ru ID - VUU_2012_3_a5 ER -
%0 Journal Article %A N. V. Latypova %T Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2012 %P 53-64 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2012_3_a5/ %G ru %F VUU_2012_3_a5
N. V. Latypova. Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 53-64. http://geodesic.mathdoc.fr/item/VUU_2012_3_a5/
[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb R^n$ with applications to finite element methods”, Arch. Rat. Mech. and Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[2] Subbotin Yu. N., “Multidimensional multiple polynomial interpolation”, Metody Approksim. Interpol. (Methods of Approximation and Interpolation: Transactions), Computing Centre, Academy of Sciences of the USSR, Novosibirsk, 1981, 148–152 | MR
[3] Subbotin Yu. N., “Dependence of the estimates of approximation by interpolating polynomials of 5-th degree upon geometric properties of triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2, 1992, 110–119 | MR | Zbl
[4] Subbotin Yu. N., “A New Cubic Element in the FEM”, Proceeding of the Steklov Institute of Mathematics, suppl. 2, 2005, S176–S187 | MR | Zbl
[5] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Russian journal of numerical analysis and mathematical modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl
[6] Baidakova N. V., “A Method of Hermite interpolation by polynomials of the third degree on a triangle”, Proceeding of the Steklov Institute of Mathematics, suppl. 2, 2005, S49–S55 | MR | Zbl
[7] Latypova N. V., “Error estimates of approximation by polynomials of degree $4k+3$ on the triangle”, Proceeding of the Steklov Institute of Mathematics, Suppl. 1, 2002, S190-S213 | MR | Zbl
[8] Latypova N. V., “Error of interpolation by piecewise cubic polynomial on triangle”, Vestn. Udmurt. Univ. Mat., 2003, 3–18
[9] Latypova N. V., “Error of interpolation by a piecewise parabolic polynomial on a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 3, 91–97
[10] Latypova N. V., “Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 17, no. 3, 2011, 233–241
[11] Latypova N. V., “Independence of interpolation error by fourth-degree polynomials on angles in a triangle”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 3, 64–74
[12] Berezin I. S., Zhidkov N. P., Metody vychislenii (Computing Methods), v. 1, Fizmatgiz, Moscow, 1962, 464 pp. | MR