About Stone space of one Boolean algebra
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 19-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space $N$. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to $\beta\omega$, is a closure of the union of finitely many antichains from $N$. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to $\beta\omega\setminus\omega$; a subset of the remainder which is homeomorphic to $\beta\omega\setminus\omega$, but is not a clopen.
Mots-clés : сompactification, chain, antichain.
Keywords: Stone space of Boolean algebra
@article{VUU_2012_3_a2,
     author = {R. A. Golovastov},
     title = {About {Stone} space of one {Boolean} algebra},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {19--24},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/}
}
TY  - JOUR
AU  - R. A. Golovastov
TI  - About Stone space of one Boolean algebra
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 19
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/
LA  - ru
ID  - VUU_2012_3_a2
ER  - 
%0 Journal Article
%A R. A. Golovastov
%T About Stone space of one Boolean algebra
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 19-24
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/
%G ru
%F VUU_2012_3_a2
R. A. Golovastov. About Stone space of one Boolean algebra. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 19-24. http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/

[1] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 | MR

[2] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “On Bell's compactification of $N$”, Topology Proceedings, 35 (2010), 177–185 | MR | Zbl

[3] Bastrykov E. S., “About some points of Bell's compactification of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 4, 3–6

[4] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of ${N}$”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 3, 10–17

[5] Gryzlov A. A., “On convergent sequences and copies of $\beta N$ in one compactification of $N$”, XI Prague Symposium on General Topology, Prague, Czech Rep., 2011, 29

[6] Golovastov R. A., “About one compactifications of countable discrete space”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011, no. 1, 14–19