About Stone space of one Boolean algebra
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 19-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space $N$. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to $\beta\omega$, is a closure of the union of finitely many antichains from $N$. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to $\beta\omega\setminus\omega$; a subset of the remainder which is homeomorphic to $\beta\omega\setminus\omega$, but is not a clopen.
Mots-clés :
сompactification, chain, antichain.
Keywords: Stone space of Boolean algebra
Keywords: Stone space of Boolean algebra
@article{VUU_2012_3_a2,
author = {R. A. Golovastov},
title = {About {Stone} space of one {Boolean} algebra},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {19--24},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/}
}
R. A. Golovastov. About Stone space of one Boolean algebra. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 19-24. http://geodesic.mathdoc.fr/item/VUU_2012_3_a2/