Mots-clés : modal matrix, constraint equations
@article{VUU_2012_3_a11,
author = {A. A. Yudakov},
title = {Principles of flexible body general dynamic equations derivation based on the {Craig{\textendash}Bampton} model and of their practically significant approximations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {126--140},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/}
}
TY - JOUR AU - A. A. Yudakov TI - Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 126 EP - 140 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/ LA - ru ID - VUU_2012_3_a11 ER -
%0 Journal Article %A A. A. Yudakov %T Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2012 %P 126-140 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/ %G ru %F VUU_2012_3_a11
A. A. Yudakov. Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 126-140. http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/
[1] Obraztsov I. F., Savel'ev L. M., Khazanov Kh. S., Metod konechnykh elementov v zadachakh stroitel'noi mekhaniki letatel'nykh apparatov (Finite element method in the problems of aircraft structural mechanics), Vysshaya Shkola, Moscow, 1985, 392 pp. | Zbl
[2] Zenkevich O., Metod konechnykh elementov v tekhnike (Finite element method in engineering), Mir, Moscow, 1975, 542 pp.
[3] Bathe K.-J., Wilson E. L., Numerical methods in finite element analysis, Prentice-Hall, New Jersey, 1976, 528 pp.
[4] Shabana A. A., An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies, Techn. Rep. No MBS96-1-UIC, Dept. of Mech. Eng., Univ. of Illinois, Chicago, 1996
[5] Mikheev G. V., Computer simulation of rigid and flexible multibody system dynamics with small deformations, Cand. Sci. (Eng.) Dissertation, Bryansk, 2004, 153 pp.
[6] MSC.Adams/Flex software documentation, URL: http://simcompanion.mscsoftware.com/infocenter/index?page=content& id=DOC10098& cat=1VMO50& actp=LIST
[7] Yudakov A. A., “General equations of flexible bodies motion, based on finite element method and Craig–Bampton model”, High Technologies, Education, Industry, Trans. Of XI Int. Sci.-Pract. Conf. (Saint Petersburg State University), v. 4, St. Petersburg, 2011, 135–142
[8] Boikov V. G., Yudakov A. A., “Simulation of rigid and flexible multibody system dynamics with EULER software”, Inform. Tekhn. Vych. Sist., 2011, no. 1, 42–52
[9] Craig R. R., Bampton M. C., “Coupling of substructures for dynamic analysis”, AIAA Journal, 6:7 (1968), 1313–1319 | DOI | Zbl