Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 126-140
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article dynamic equations of motion of flexible bodies' large displacement within a multibody system with small deformations are given. In the process of derivation finite element method (FEM) and the Craig–Bampton method of FEM model's matrices reduction are used. No additional approximations are involved, thus obtaining the most general equations in given problem definition. Analysis of difficulties arising in practical using of the derived general dynamic equations is conducted, and ways to overcome those are suggested. Modified equations derivation using more general approximation than is assumed in literature is presented. An example of derived flexible structures' dynamic equations software realization is given.
Keywords: flexible body, finite element method, Craig–Bampton model, dynamic equations, multibody system.
Mots-clés : modal matrix, constraint equations
@article{VUU_2012_3_a11,
     author = {A. A. Yudakov},
     title = {Principles of flexible body general dynamic equations derivation based on the {Craig{\textendash}Bampton} model and of their practically significant approximations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {126--140},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/}
}
TY  - JOUR
AU  - A. A. Yudakov
TI  - Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 126
EP  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/
LA  - ru
ID  - VUU_2012_3_a11
ER  - 
%0 Journal Article
%A A. A. Yudakov
%T Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 126-140
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/
%G ru
%F VUU_2012_3_a11
A. A. Yudakov. Principles of flexible body general dynamic equations derivation based on the Craig–Bampton model and of their practically significant approximations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 126-140. http://geodesic.mathdoc.fr/item/VUU_2012_3_a11/

[1] Obraztsov I. F., Savel'ev L. M., Khazanov Kh. S., Metod konechnykh elementov v zadachakh stroitel'noi mekhaniki letatel'nykh apparatov (Finite element method in the problems of aircraft structural mechanics), Vysshaya Shkola, Moscow, 1985, 392 pp. | Zbl

[2] Zenkevich O., Metod konechnykh elementov v tekhnike (Finite element method in engineering), Mir, Moscow, 1975, 542 pp.

[3] Bathe K.-J., Wilson E. L., Numerical methods in finite element analysis, Prentice-Hall, New Jersey, 1976, 528 pp.

[4] Shabana A. A., An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies, Techn. Rep. No MBS96-1-UIC, Dept. of Mech. Eng., Univ. of Illinois, Chicago, 1996

[5] Mikheev G. V., Computer simulation of rigid and flexible multibody system dynamics with small deformations, Cand. Sci. (Eng.) Dissertation, Bryansk, 2004, 153 pp.

[6] MSC.Adams/Flex software documentation, URL: http://simcompanion.mscsoftware.com/infocenter/index?page=content& id=DOC10098& cat=1VMO50& actp=LIST

[7] Yudakov A. A., “General equations of flexible bodies motion, based on finite element method and Craig–Bampton model”, High Technologies, Education, Industry, Trans. Of XI Int. Sci.-Pract. Conf. (Saint Petersburg State University), v. 4, St. Petersburg, 2011, 135–142

[8] Boikov V. G., Yudakov A. A., “Simulation of rigid and flexible multibody system dynamics with EULER software”, Inform. Tekhn. Vych. Sist., 2011, no. 1, 42–52

[9] Craig R. R., Bampton M. C., “Coupling of substructures for dynamic analysis”, AIAA Journal, 6:7 (1968), 1313–1319 | DOI | Zbl