On some boundary value problems for a third order loaded integro-differential equation with real parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear loaded integro-differential equation with hyperbolic operator $$ \frac\partial{\partial x}\left(u_{xx}-u_{yy}-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha _i}u_y(x,0), $$ and loaded integro-differential equation with mixed operator $$ \frac\partial{\partial x}\left(u_{xx}-\frac{1-\operatorname{sgn}y}2u_{yy}-\frac{1+\operatorname{sgn}y}2u_y-\lambda u\right)=\mu\sum_{i=1}^na_i(x)D_{0x}^{\alpha_i}u_y(x,0), $$ where $D_{0x}^{\alpha_i}$ is integro-differential operator (in the sense of Riemann–Liouville), $a_i(x)$ are coefficients, $\lambda,\mu$ are given real parameters, and $\lambda>0$. In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.
Keywords: loaded equation, equations of mixed type, integro-differential equation, integral equation with a shift, Bessel functions.
@article{VUU_2012_3_a0,
     author = {U. I. Baltaeva},
     title = {On some boundary value problems for a~third order loaded integro-differential equation with real parameters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--12},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_3_a0/}
}
TY  - JOUR
AU  - U. I. Baltaeva
TI  - On some boundary value problems for a third order loaded integro-differential equation with real parameters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 3
EP  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_3_a0/
LA  - ru
ID  - VUU_2012_3_a0
ER  - 
%0 Journal Article
%A U. I. Baltaeva
%T On some boundary value problems for a third order loaded integro-differential equation with real parameters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 3-12
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2012_3_a0/
%G ru
%F VUU_2012_3_a0
U. I. Baltaeva. On some boundary value problems for a third order loaded integro-differential equation with real parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2012), pp. 3-12. http://geodesic.mathdoc.fr/item/VUU_2012_3_a0/

[1] Nakhushev A.M., “Darboux problem for a one degenerating loaded integro-differential equation of the second order”, Differ. Uravn., 12:1 (1976), 103–108 | MR | Zbl

[2] Nakhushev A.M., Uravneniya matematicheskoi biologii (The equations of mathematical biology), Vysshaya shkola, Moscow, 1995, 301 pp. | Zbl

[3] Kaziev V.M., “About Darboux problem for a one loaded integro-differential equation of the second order”, Differ. Uravn., 14:1 (1978), 181–184 | MR | Zbl

[4] Dzhuraev T.D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipa (Boundary value problems for the equation of mixed and mixed-composite type), Fan, Tashkent, 1971, 240 pp. | MR | Zbl

[5] Dzhurayev T.D., Sopuev A., Mamazhonov M., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa (Boundary value problems for the parabolic-hyperbolic type equations), Fan, Tashkent, 1986, 576 pp. | MR | Zbl

[6] Salakhitdinov M.S., Uravnenie smeshanno-sostavnogo tipa (Equation of mixed-composite type), Fan, Tashkent, 1974, 156 pp. | MR

[7] Mikhlin S.G., Lektsii po lineinym integral‘nym uravneniyam (Lecture on linear integral equations), Fizmatgiz, Moscow, 1959, 224 pp. | MR

[8] Sabitov K.B., “Construction of solution explicit form of Darboux problem for telegraph equation and application for inversion of integral equations”, Differ. Uravn., 26:6 (1990), 1023–1032 | MR | Zbl

[9] Baltaeva U.I., “On some boundary value problems for a third order loaded equation with a parabolic-hyperbolic operator”, Uzbek. Mat. Journal, Tashkent, 2007, no. 3, 26–37 | MR | Zbl

[10] Baltaeva U.I., Boundary value problems for the loaded third order equations of the mixed type, Cand. Sci. (Phys.-Math.) Dissertation, Tashkent yr 2008, 111 pp.

[11] Baltaeva U.I., Islomov B., “Boundary value problems for the loaded third order differential equations of the hyperbolic and mixed types”, Ufim. Mat. J., 3:3 (2011), 15–25 | Zbl