On the application of random searching for the hard particles packing problem for composite solid propellant structure modeling
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 106-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a problem statement for random hard particles packing as minimization of an objective function that is the measure of overlapping of $\mathbb R^3$ subdomains representing particles and forbidden zones, with desired pack characteristics being accounted for by an additional summand in the objective function. A new algorithm based on the random search approach is proposed; it assesses a new particles configuration after each movement, and particles grow from an initial to full size as overlaps being removed. This algorithm is matched with the viscous suspension algorithm for the case of packing equal-sized spheres in a periodic cube. For packing fractions $\varphi<0,55$ the random search algorithm yields packs with fewer and smaller particle clusters than the viscous suspension one, in denser packs differences are insignificant. An example of creating a pack with the feature that particles are shifted closely to the solid boundary is shown as well.
Keywords: hard spheres, packing, random searching, composite solid propellant structure.
Mots-clés : hard particles
@article{VUU_2012_2_a9,
     author = {A. A. Bolkisev},
     title = {On the application of random searching for the hard particles packing problem for composite solid propellant structure modeling},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {106--113},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a9/}
}
TY  - JOUR
AU  - A. A. Bolkisev
TI  - On the application of random searching for the hard particles packing problem for composite solid propellant structure modeling
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 106
EP  - 113
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a9/
LA  - ru
ID  - VUU_2012_2_a9
ER  - 
%0 Journal Article
%A A. A. Bolkisev
%T On the application of random searching for the hard particles packing problem for composite solid propellant structure modeling
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 106-113
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a9/
%G ru
%F VUU_2012_2_a9
A. A. Bolkisev. On the application of random searching for the hard particles packing problem for composite solid propellant structure modeling. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 106-113. http://geodesic.mathdoc.fr/item/VUU_2012_2_a9/

[1] Rashkovskii S. A., “Struktura geterogennykh kondensirovannykh smesei”, Fizika goreniya i vzryva, 35:5 (1999), 65–74

[2] Lubachevsky B. D., Stillinger F. H., “Geometric properties of random disk packings”, Journal of Statistical Physics, 60:5/6 (1990), 561–583 | DOI | MR | Zbl

[3] Knott G. M., Jackson T. L., Buckmaster J., “Random packing of heterogeneous propellants”, AIAA Journal, 39:4 (2001), 678–686 | DOI

[4] Davis I. L., Carter R. G., “Random particle packing by reduced dimensions algorithms”, Journal of Applied Physics, 67:2 (1990), 1022–1029 | DOI

[5] Tanner M. W., Multidimensional modeling of solid propellant burning rates and aluminum agglomeration and one-dimensional modeling of RDX/GAP and AP/HTPB, Ph. D. Diss., Brigham Young University, 2008

[6] Webb M. D., Davis I. L., “Random particle packing with large particle size variations using reduced-dimension algorithms”, Powder Technology, 167:1 (2006), 10–19 | DOI

[7] Shi Y., Zhang Y., “Simulation of random packing of spherical particles with different size distributions”, Applied Physics A: Materials Science Processing, 92:3 (2008), 621–626 | DOI

[8] O'Hern C. S., Langer S. A., Liu A. J., Nagel S. R., “Random packings of frictionless particles”, Physical Review Letters, 88:7 (2002), 1–4

[9] Jia X., Williams R. A., “A packing algorithm for particles of arbitrary shapes”, Powder Technology, 120 (2001), 175–186 | DOI

[10] Lipanov A. M., Fiziko-khimicheskaya i matematicheskaya modeli goreniya smesevykh tvërdykh topliv, preprint, IPM UrO RAN, Izhevsk, 2007, 112 pp.

[11] Rastrigin L. A., Teoriya i primenenie sluchainogo poiska, Zinatne, Riga, 1969, 307 pp. | Zbl

[12] Raschdorf S., Kolonko M., “A comparison of data structures for the simulation of polydisperse particle packings”, International Journal for Numerical Methods in Engineering, 85:5 (2011), 625–639 | DOI | MR | Zbl

[13] Kamien R. D., Liu A. J., “Why is random close packing reproducible?”, Physical Review Letters, 99:15 (2007), 155501, 4 pp. | DOI | Zbl

[14] Torquato S., Truskett T. M., Debenedetti P. G., “Is random close packing of spheres well defined?”, Physical Review Letters, 84:10 (2000), 2064–2067 | DOI

[15] Rashkovskii S. A., Statisticheskoe modelirovanie protsessov goreniya geterogennykh kondensirovannykh smesei, Dis. $\dots$ d-ra fiz.-mat. nauk, Institut problem mekhaniki RAN, Moskva, 2004, 428 pp.