Computational solution of time-optimal control problem for linear systems with delay
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 100-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A computational method of solving time-optimal control problem for linear systems with delay is proposed. It is proved that the method converges in a finite number of iterations to an $\varepsilon$-optimal solution, which is understood as a pair $\{T,u\},$ where $u=u(t)$, $t\in[0,T]$ is an admissible control that moves the system into an $\varepsilon$-neighborhood of the origin in time $T\le T_{\min}$, and the optimal time is $T_{\min}$. An enough general time-optimal control problem with delay is studied in [Vasil'ev F. P, Ivanov R. P. On an approximated solving of time-optimal control problem with delay, Zh. Vychisl. Mat. Mat. Fiz., 1970, vol. 10, no. 5, pp. 1124–1140 (in Russian)], an approximate solution is proposed for it, and computational aspects are discussed. However, to solve some auxiliary optimal control problems arising there, it is suggested to use methods of gradient and Newton type, which possess only a local convergence. The method proposed in the present paper has a global convergence.
Keywords: admissible control, optimal control, time-optimal control.
@article{VUU_2012_2_a8,
     author = {G. V. Shevchenko},
     title = {Computational solution of time-optimal control problem for linear systems with delay},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {100--105},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a8/}
}
TY  - JOUR
AU  - G. V. Shevchenko
TI  - Computational solution of time-optimal control problem for linear systems with delay
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 100
EP  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a8/
LA  - ru
ID  - VUU_2012_2_a8
ER  - 
%0 Journal Article
%A G. V. Shevchenko
%T Computational solution of time-optimal control problem for linear systems with delay
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 100-105
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a8/
%G ru
%F VUU_2012_2_a8
G. V. Shevchenko. Computational solution of time-optimal control problem for linear systems with delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 100-105. http://geodesic.mathdoc.fr/item/VUU_2012_2_a8/

[1] Vasilev F. P., Ivanov R. P., “O priblizhennom reshenii zadachi bystrodeistviya s zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 10:5 (1970), 1124–1140 | MR | Zbl

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969, 408 pp. | MR

[3] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977, 650 pp.

[4] Shevchenko G. V., “Chislennyi algoritm resheniya lineinoi zadachi optimalnogo byctrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:8 (2002), 1166–1178 | MR | Zbl

[5] Shevchenko G. V., “Chislennoe reshenie nelineinoi zadachi optimalnogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 51:4 (2011), 580–593 | MR | Zbl

[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1983, 393 pp. | Zbl

[7] von Hohenbalken B., “A finite algorithm to maximize certain pseudoconcave functions on polytopes”, Math. Program., 9 (1975), 189–206 | DOI | MR | Zbl