Modeling of interaction of a supersonic stream and the deformable panel in a shock tube
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 156-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents an algorithm for solving the FSI problem of gas-structure interaction between a supersonic flow and a deformable panel. Gas flows are modelled by the system of conservation equations for a perfect gas. Numerical integration is based on the finite volume method. To approximate convective flows in space, a monotonic scheme is used, providing a second-order approximation in the smooth parts of the domain. For dynamic panel deformation, the finite element method is used to discretize the spatial variables and the Newmark method is used to discretize the time variable. Numerical solution of the FSI problem is obtained on nonmatching unstructured meshes providing different discretization and approximation schemes. Boundary interactions are modelled by the algorithm of bidirectional weak binding. Obtained numerical results are compared with available experimental data. A number of different factors affecting the gas flow and the panel shape are analyzed.
Keywords: fluid-structure interaction, shock tube, numerical modelling.
@article{VUU_2012_2_a13,
     author = {S. P. Kopysov and I. M. Kuz'min and L. E. Tonkov},
     title = {Modeling of interaction of a~supersonic stream and the deformable panel in a~shock tube},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {156--165},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a13/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - I. M. Kuz'min
AU  - L. E. Tonkov
TI  - Modeling of interaction of a supersonic stream and the deformable panel in a shock tube
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 156
EP  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a13/
LA  - ru
ID  - VUU_2012_2_a13
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A I. M. Kuz'min
%A L. E. Tonkov
%T Modeling of interaction of a supersonic stream and the deformable panel in a shock tube
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 156-165
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a13/
%G ru
%F VUU_2012_2_a13
S. P. Kopysov; I. M. Kuz'min; L. E. Tonkov. Modeling of interaction of a supersonic stream and the deformable panel in a shock tube. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 156-165. http://geodesic.mathdoc.fr/item/VUU_2012_2_a13/

[1] Farhat C., Lesoinne M., “Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems”, Computer Methods in Applied Mechanics and Engineering, 182:3–4 (2000), 499–515 | DOI | MR | Zbl

[2] Giordano J., Jourdan G., Burtschell Y., Medale M., Zeitoun D. E., Houas L., “Shock wave impacts on deforming panel, an application of fluid-structure interaction”, Shock Waves, 14 (2005), 103–110 | DOI | Zbl

[3] Jourdan G., Houas L., Schwaederl L., Layes G., Carrey R., Diaz F., “A new variable inclination shock tube for multiple investigations”, Shock Waves, 13 (2004), 501–504 | DOI

[4] Tonkov L. E., “Verifikatsiya biblioteki prikladnykh programm OpenFOAM na zadache transzvukovogo vnutrennego techeniya v diffuzore”, Aktualnye problemy matematiki, mekhaniki, informatiki, sb. statei, IMM UrO RAN, Ekaterinburg, 2009, 89–94

[5] Kopysov S. P., Novikov A. K., Ponomarëv A. B., Rychkov V. N., Sagdeeva Yu. A., “Programmnaya sreda raschëtnykh setochnykh modelei dlya parallelnykh vychislenii”, Programmnye produkty i sistemy, 2008, no. 2, 87–89 | MR

[6] de Boer A., van Zuijlen A. H., Bijl H., “Comparison of conservative and consistent approaches for the coupling of non-matching meshes”, Computer Methods in Applied Mechanics and Engineering, 197:49–50 (2008), 4284–4297 | DOI | Zbl

[7] Degand C., Farhat C., “A three-dimensional torsional spring analogy method for unstructured dynamic meshes”, Computers and Structures, 80 (2002), 305–316 | DOI

[8] Errera M., Dugeai A., Girodroux-Lavigne Ph., Garaud J.-D., Poinot M., Cerqueira S., Chaineray G., “Multi-Physics Coupling Approaches for Aerospace Numerical Simulations”, The ONERA Journal AerospaceLab., 2011, no. 2, 1–16

[9] Van Leer B., “Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comp. Phys., 32 (1977), 263–275