Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures' dynamic behavior
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 139-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classification of the dynamic equations forms for the rigid multibody systems with tree structure has been presented. The classification is based on the compact matrix forms of multibody systems' kinematic and dynamic equations derived through the matrix of kinematic structure and geometrical approach for relative motion description. The unified form of motion's equations is suitable for representing and comparing of various approaches to the modeling of rigid multibody systems' dynamics. The comparative analysis of computational efficiency has been carried out in relation to various methods of formulation and solution for motion equations of rigid multibody systems.
Keywords: dynamics of multibody systems, time-domain method
Mots-clés : matrix computations.
@article{VUU_2012_2_a12,
     author = {V. N. Ivanov and I. V. Dombrovskii and F. V. Nabokov and N. A. Shevelev and V. A. Shimanovskii},
     title = {Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures' dynamic behavior},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {139--155},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a12/}
}
TY  - JOUR
AU  - V. N. Ivanov
AU  - I. V. Dombrovskii
AU  - F. V. Nabokov
AU  - N. A. Shevelev
AU  - V. A. Shimanovskii
TI  - Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures' dynamic behavior
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 139
EP  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a12/
LA  - ru
ID  - VUU_2012_2_a12
ER  - 
%0 Journal Article
%A V. N. Ivanov
%A I. V. Dombrovskii
%A F. V. Nabokov
%A N. A. Shevelev
%A V. A. Shimanovskii
%T Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures' dynamic behavior
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 139-155
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a12/
%G ru
%F VUU_2012_2_a12
V. N. Ivanov; I. V. Dombrovskii; F. V. Nabokov; N. A. Shevelev; V. A. Shimanovskii. Classification of the models of rigid multibody systems applied for the numerical analysis of mechanical structures' dynamic behavior. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 139-155. http://geodesic.mathdoc.fr/item/VUU_2012_2_a12/

[1] Adams: sistema virtualnogo modelirovaniya mashin i mekhanizmov, [Elektronnyi resurs] URL: , OOO “Em-Es-Si Softver RUS”, 2001–2012 http://www.mscsoftware.ru/products/adams

[2] Byachkov A. B., Ivanov V. N., Shimanovskii V. A., “Klassifikatsiya form uravnenii dinamiki sistem tvërdykh tel so strukturoi dereva”, Vestnik Perm. un-ta. Matematika. Mekhanika. Informatika, 2009, no. 7(33), 21–25

[3] Velichenko V. V., Matrichno-geometricheskie metody v mekhanike s prilozheniyami k zadacham robototekhniki, Nauka, M., 1988, 384 pp. | Zbl

[4] Vereschagin A. F., “Metod modelirovaniya na TsVM dinamiki slozhnykh mekhanizmov robotov-manipulyatorov”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1974, no. 6, 89–94

[5] Vittenburg I., Dinamika sistem tvërdykh tel, Mir, M., 1980, 292 pp. | MR

[6] Ivanov V. N., Shimanovskii V. A., “Ispolzovanie iteratsionnykh algoritmov razresheniya uravnenii dvizheniya mekhanicheskikh sistem pri ikh chislennom integrirovanii”, Vestnik Perm. un-ta. Matematika. Mekhanika. Informatika, 2006, no. 4(4), 28–38

[7] Ivanov V. N., Shimanovskii V. A., “Primenenie iteratsionnykh metodov dlya razresheniya uravnenii dvizheniya sistem svyazannykh tvërdykh tel”, Vestnik Perm. un-ta. Matematika. Mekhanika. Informatika, 2008, no. 4(20), 109–116

[8] Lilov L. K., Modelirovanie sistem svyazannykh tel, Nauka, M., 1993, 272 pp. | MR | Zbl

[9] Pogorelov D. Yu., Vvedenie v modelirovanie dinamiki sistem tel, BGTU, Bryansk, 1997, 156 pp.

[10] Pogorelov D. Yu., “Algoritmy sinteza i chislennogo integrirovaniya uravnenii dvizheniya sistem tel s bolshim chislom stepenei svobody”, Vosmoi Vseross. s'ezd po teoreticheskoi i prikladnoi mekhanike, annotats. dokl., Perm, 2001, 490–491 URL: http://www.iki.rssi.ru/seminar/20011025/abstract.htm

[11] Universalnyi mekhanizm: dinamika mashin i mekhanizmov, dinamika avtomobilei i zheleznodorozhnykh ekipazhei, prikladnaya mekhanika, kinematika, obratnaya kinematika, [Elektronnyi resurs] URL: , Laboratoriya vychislitelnoi mekhaniki/ Bryanskii gosudarstvennyi tekhnicheskii universitet, Bryansk, 2012 http://www.umlab.ru/index_rus.htm

[12] FRUND: modelirovanie dinamiki sistem tvërdykh i uprugikh tel, [Elektronnyi resurs] URL: , Volgogradskii gosudarstvennyi tekhnicheskii universitet, Volgograd, 2005 http://frund.vstu.ru/frund.htm

[13] Shimanovskii V. A., Ivanov V. N., “Formirovanie uravnenii dvizheniya mekhanicheskikh sistem v obobschënnykh koordinatakh”, Problemy mekhaniki i upravleniya: Nelineinye dinamicheskie sistemy, mezhvuz. sb. nauch. tr., 37, Perm. un-t, Perm, 2005, 188–201

[14] Shimanovskii V. A., Ivanov V. N., “Metody sostavleniya uravnenii dvizheniya sistem svyazannykh tvërdykh tel v dekartovykh koordinatakh”, Problemy mekhaniki i upravleniya: Nelineinye dinamicheskie sistemy, mezhvuz. sb. nauch. tr., 39, Perm. un-t, Perm, 2007, 248–262

[15] EULER: programmnyi kompleks avtomatizirovannogo dinamicheskogo analiza mnogokomponentnykh mekhanicheskikh sistem, [Elektronnyi resurs] URL: , ZAO “AvtoMekhanika”, M., 1993–2011 http://www.euler.ru/index.php/euler