To dynamics of a double pendulum with a horizontally vibrating point of suspension
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 114-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the motion of a system consisting of two hinged thin uniform rods rotating about horizontal axes. It is assumed that the point of suspension of the system coinciding with the point of suspension of one of the rods makes horizontal high-frequency harmonic oscillations of a small amplitude. Investigation of stability of four relative equilibria in the vertical is carried out. It is proved that only the lower (“hanging”) relative equilibrium can be stable if the oscillation frequency of the point of suspension doesn't exceed the fixed value. For a system consisting of two identical rods the nonlinear problem of stability of this equilibrium is solved. The problem of existence, bifurcations and stability of high-frequency periodic motions of a small amplitude which differ from the relative equilibria in the vertical is also studied for the system.
Keywords: double pendulum, high–frequency oscillations, stability, KAM-theory.
@article{VUU_2012_2_a10,
     author = {E. A. Vishenkova and O. V. Kholostova},
     title = {To dynamics of a~double pendulum with a~horizontally vibrating point of suspension},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {114--129},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a10/}
}
TY  - JOUR
AU  - E. A. Vishenkova
AU  - O. V. Kholostova
TI  - To dynamics of a double pendulum with a horizontally vibrating point of suspension
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 114
EP  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a10/
LA  - ru
ID  - VUU_2012_2_a10
ER  - 
%0 Journal Article
%A E. A. Vishenkova
%A O. V. Kholostova
%T To dynamics of a double pendulum with a horizontally vibrating point of suspension
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 114-129
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a10/
%G ru
%F VUU_2012_2_a10
E. A. Vishenkova; O. V. Kholostova. To dynamics of a double pendulum with a horizontally vibrating point of suspension. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 114-129. http://geodesic.mathdoc.fr/item/VUU_2012_2_a10/

[1] Stephenson A., “On a new type of dynamical stability”, Mem. and Proc. of the Manchester Literary and Phil. Soc., 52:8, Pt. 2 (1908), 10 pp. | Zbl

[2] Kapitsa P. L., “Mayatnik s vibriruyuschim podvesom”, Uspekhi fiz. nauk, 44:1 (1951), 7–20

[3] Kapitsa P. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 21:5 (1951), 588–597

[4] Bardin B. S., Markeev A. P., “Ob ustoichivosti ravnovesiya mayatnika pri vertikalnykh kolebaniyakh tochki podvesa”, Prikladnaya matematika i mekhanika, 59:6 (1995), 922–929 | MR | Zbl

[5] Kholostova O. V., “Ob ustoichivosti periodicheskikh dvizhenii mayatnika s gorizontalno vibriruyuschei tochkoi podvesa”, Izv. RAN. MTT, 1997, no. 4, 35–39 | MR

[6] Bogolyubov N. N., “Teoriya vozmuschenii v nelineinoi mekhanike”, Cb. trudov Instituta stroit. mekhaniki AN USSR, 14, 1950, 9–34

[7] Markeev A. P., “O dinamike sfericheskogo mayatnika s vibriruyuschim podvesom”, Prikladnaya matematika i mekhanika, 63:2 (1999), 213–219 | MR | Zbl

[8] Strizhak T. G., Metody issledovaniya dinamicheskikh sistem tipa “mayatnik”, Nauka, Alma-Ata, 1981, 253 pp. | MR

[9] Yudovich V. I., “Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami”, Uspekhi mekhaniki, 4:3 (2006), 26–158

[10] Markeev A. P., “K teorii dvizheniya tverdogo tela s vibriruyuschim podvesom”, Doklady Akademii nauk, 427:6 (2009), 771–775 | MR | Zbl

[11] Markeev A. P., “Ob uravneniyakh priblizhennoi teorii dvizheniya tverdogo tela s vibriruyuschei tochkoi podvesa”, Prikladnaya matematika i mekhanika, 75:2 (2011), 193–203 | MR

[12] Kholostova O. V., “Ob ustoichivosti ravnovesii tverdogo tela s vibriruyuschei tochkoi podvesa”, Vestnik RUDN. Matematika. Informatika. Fizika, 2011, no. 2, 111–122

[13] Stephenson A., “On induced stability”, Phil. Mag. Ser. 6, 17 (1909), 765–766 | DOI | Zbl

[14] Kholostova O. V., “O dvizheniyakh dvoinogo mayatnika s vibriruyuschei tochkoi podvesa”, Izv. RAN. MTT, 2009, no. 2, 25–40

[15] Kholostova O. V., “Ob ustoichivosti otnositelnykh ravnovesii dvoinogo mayatnika s vibriruyuschei tochkoi podvesa”, Mekhanika tverdogo tela, 2011, no. 4, 18–30

[16] Markeev A. P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike, Nauka, M., 1978, 312 pp.

[17] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 3-e izd., Editorial URSS, M., 2009, 416 pp.

[18] Glimm J., “Formal stability of Hamiltonian systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl