Global asymptotic stabilization of bilinear control systems with periodic coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for uniform global asymptotic stabilization of the origin are obtained for bilinear control systems with periodic coefficients. The proof is based on the use of the Krasovsky theorem on global asymptotic stability of the origin for periodic systems. The stabilizing control function is feedback control constructed as the quadratic form of the phase variables and depends on time periodically.
Keywords: global asymptotic stability, stabilization, Lyapunov function, bilinear systems, periodic systems.
@article{VUU_2012_2_a1,
     author = {V. A. Zaitsev},
     title = {Global asymptotic stabilization of bilinear control systems with periodic coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {17--27},
     year = {2012},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_2_a1/}
}
TY  - JOUR
AU  - V. A. Zaitsev
TI  - Global asymptotic stabilization of bilinear control systems with periodic coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 17
EP  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_2_a1/
LA  - en
ID  - VUU_2012_2_a1
ER  - 
%0 Journal Article
%A V. A. Zaitsev
%T Global asymptotic stabilization of bilinear control systems with periodic coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 17-27
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2012_2_a1/
%G en
%F VUU_2012_2_a1
V. A. Zaitsev. Global asymptotic stabilization of bilinear control systems with periodic coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2012), pp. 17-27. http://geodesic.mathdoc.fr/item/VUU_2012_2_a1/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya (Some problems of the theory of stability of motion), Fizmatgiz, Moscow, 1959, 221 pp. | MR

[2] Rouche N., Habets P., Laloy M., Stability theory by Liapunov's direct method, Springer-Verlag, New York–Heidelberg–Berlin, 1977, 396 pp. | MR | Zbl

[3] Khalil H., Nonlinear Systems, Third Edition, Prentice Hall, Upper Saddle River, NJ, 2002, 750 pp. | Zbl

[4] Zaitsev V. A., Tonkov Ye. L., “Attainability, consistency and the rotation method by V. M. Millionshchikov”, Russian Mathematics, 43:2 (1999), 42–52 | MR | Zbl

[5] Popova S. N., Tonkov E. L., “Control over the Lyapunov exponents of consistent systems. I”, Differential Equations, 30:10 (1994), 1556–1564 | MR | Zbl

[6] Zaitsev V. A., “Consistent Systems and Pole Assignment. I”, Differential Equations, 48:1 (2012), 120–135 | DOI | MR | Zbl

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem (Control Theory of Motion), Nauka, Moscow, 1968 | MR

[8] Chang A., “An algebraic characterization of controllability”, IEEE Transactions on Automatic Control, 10:1 (1965), 112–113 | DOI

[9] Lancaster P., Tismenetsky M., The Theory of Matrices, Second Edition with Applications, Academic Press, 1985, 570 pp. | MR | Zbl