On integrating the projectile motion equations of a heavy point in medium with height decreasing density
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 120-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The resolvent method based on Legendre transformation was applied to integrate ballistic equations of a heavy point mass in inhomogeneous medium with the drag force being power-law with respect to speed, at that the coefficient of the drag force decreases linearly with height $y$. General expressions were obtained for resolvent function $a''_{bb}(b)$ with $a(b)$ being an intercept and $b=\operatorname{tg}\theta$, where $\theta$ is inclination angle. In the second order by gradient $c/m^{-1}$ of perturbative approach, the universal formulas for $\delta a''_{bb}(b)$-, $\delta x(b)$-, $\delta y(b)$-additions were derived. The case of Releigh resistance was considered particularly in frames of the method above and inhomogeneity influence on the motion was investigated. The falling of gravity $g(y)$ is taken into consideration too.
Mots-clés : Legendre transformation
Keywords: resolvent function, power law air drag, linear density inhomogenity.
@article{VUU_2012_1_a9,
     author = {V. V. Chistyakov},
     title = {On integrating the projectile motion equations of a~heavy point in medium with height decreasing density},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {120--132},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a9/}
}
TY  - JOUR
AU  - V. V. Chistyakov
TI  - On integrating the projectile motion equations of a heavy point in medium with height decreasing density
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 120
EP  - 132
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a9/
LA  - ru
ID  - VUU_2012_1_a9
ER  - 
%0 Journal Article
%A V. V. Chistyakov
%T On integrating the projectile motion equations of a heavy point in medium with height decreasing density
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 120-132
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a9/
%G ru
%F VUU_2012_1_a9
V. V. Chistyakov. On integrating the projectile motion equations of a heavy point in medium with height decreasing density. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 120-132. http://geodesic.mathdoc.fr/item/VUU_2012_1_a9/

[1] URL: http://www.snipercountry.com/ballistics/

[2] Paul Weinacht, Gene R. Cooper, James F. Newill, Analytical Prediction of Trajectories for High-Velocity Direct-Fire Munitions, Army Research Laboratory Report URL: http://www.arl.army.mil/arlreports/2005/ARL-TR-3567.pdf

[3] Thomas R. N., Some Comments on the Form of Drag Coefficient at Supersonic Velocity, Report no. 542, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April, 1945

[4] Robert F., Lieske. Determination of aerodynamic drag and exterior ballistic trajectory simulation for the 155MM, DPICM, M864 base-burn projectile, Memorandum report BRL-MR-3768, Aberdeen, Maryland, June, 1989

[5] N. de Mestre, The Mathematics of Projectiles in Sport, Cambridge University Press, New York, 1990, 175 pp. | MR | Zbl

[6] Edward John Routh, A Treatise on Dynamics of a Particle with Numerous Examples, Cambridge Univ. Press, Cambridge, 1898, 418 pp. | Zbl

[7] Chudinov P. S., “Chislenno-analiticheskii algoritm postroeniya ogibayuschei traektorii snaryadov v vozdukhe”, Vestnik Permskogo universiteta. Cer. Matematika. Mekhanika, 2009, no. 7(33), 90–94

[8] Chistyakov V. V., “Ob odnom rezolventnom metode integrirovaniya uravnenii svobodnogo dvizheniya v srede s kvadratichnym soprotivleniem”, Kompyuternye issledovaniya i modelirovanie, 3:3 (2011), 265–277