Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 77-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The research is devoted to the investigation of the behavior of optimal solutions and value functions in optimal control problems on infinite horizon, which arise in the economic growth models when an elasticity parameter of the Cobb–Douglas production function grows up to its limit value which is equal to unity. The solution is constructed within the framework of the Pontryagin maximum principle for problems on infinite time horizon. In the limit case the problem becomes linear and has a constant optimal control depending on model parameters only. Qualitative analysis of Hamiltonian systems outlines significant changes in solution behavior, namely, the absence of steady states in the limit case. Nevertheless, both the Hamiltonian function and the maximized Hamiltonian function save their properties of smoothness with respect to all variables, and strict concavity with respect to phase variables. Value functions are constructed for both linear and nonlinear optimal control problems. Numerical experiments are implemented for illustrating results of the sensitivity analysis.
Keywords: optimal control, Hamiltonian systems, value function, Pontryagin maximum principle.
@article{VUU_2012_1_a7,
     author = {A. A. Usova},
     title = {Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {77--95},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a7/}
}
TY  - JOUR
AU  - A. A. Usova
TI  - Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 77
EP  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a7/
LA  - ru
ID  - VUU_2012_1_a7
ER  - 
%0 Journal Article
%A A. A. Usova
%T Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 77-95
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a7/
%G ru
%F VUU_2012_1_a7
A. A. Usova. Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 77-95. http://geodesic.mathdoc.fr/item/VUU_2012_1_a7/

[1] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Trudy MIAN, 257, 2007, 3–271 | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 518 pp. | MR | Zbl

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience, New York, 1962, 360 pp. | MR | Zbl

[4] Arrow K. J., “Application of control theory to economic growth”, Mathematics of the Decision Sciences, 1968, no. 2, 89–119 | MR

[5] Solow R. M., Growth theory: an exposition, Oxford University Press, New York, 1970, 109 pp.

[6] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical Systems Theory and Economics, 1 (1969), 241–292 | DOI | MR | Zbl

[7] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhauser, Boston, 1995, 324 pp. | MR

[8] Adiatulina R. A., Tarasev A. M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikladnaya matematika i mekhanika, 51 (1987), 531–537 | MR | Zbl

[9] Capuzzo Dolcetta I., “On a discrete approximation of the Hamilton–Jacobi of dynamic programming”, Applied Mathematics and Optimization, 4 (1983), 367–377 | MR

[10] Feichtinger G., Veliov V. M., “On a distributed control problem arising in dynamic optimization of a fixed-size population”, SIAM J. Optim., 18:3 (2007), 980–1003 | DOI | MR | Zbl

[11] Nikolskii M. S., “O lokalnoi lipshitsevosti funktsii Bellmana v odnoi optimizatsionnoi zadache”, Optimalnoe upravlenie i differentsialnye igry, Trudy IMM UrO RAN, 10, no. 2, 2004, 106–115 | MR | Zbl

[12] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhauser, Boston, 1995, 312 pp. | MR

[13] Falcone M., “A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 15 (1987), 1–13 | DOI | MR | Zbl

[14] Falcone M., “Corrigenda: A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 23 (1991), 213–214 | DOI | MR | Zbl

[15] Subbotina N. N., “Singular approximations of minimax and viscosity solutions to Hamilton–Jacobi equations”, Mathematical control theory, differential games, Proceedings of the Institute of Mathematics and Mechanics, 6, no. 1, 2000, 190–208 | MR | Zbl

[16] Ushakov V. N., Latushkin Ya. A., “The stability defect of sets in game control problems”, Control, stability, and inverse problems of dynamics, Proceedings of the Institute of Mathematics and Mechanics, 12, no. 2, 2006, 178–194 | MR | Zbl

[17] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye skhemy i konechnoraznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 173–185 | MR | Zbl

[18] Ushakov V. N., Matviichuk A. R., Lebedev P. D., “Defekt stabilnosti v igrovoi zadache o sblizhenii v moment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 87–103

[19] Krasovskii A. A., Assessment of the impact of aggregated economic factors on optimal consumption in models of economic growth, Interim Report IR-06-050, IIASA, 2006, 46 pp.

[20] Krasovskii A. A., Tarasyev A. M., “Conjugation of Hamiltonian systems in optimal control problems”, Preprints of the 17th World Congress of the International Federation of Automatic Control IFAC, 2008, 7784–7789

[21] Zaitsev V. A., Popova S. N., Tonkov E. L., “Eksponentsialnaya stabiliziruemost nelineinykh upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 25–29

[22] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[23] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[24] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp. | MR