The space of linear control systems and its canonical representatives
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 60-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The space of linear control systems that are parameterized with the help of a topological dynamical system is considered. For each invariant space (with respect to a flow in the dynamical system phase space) there are constructed its extension and the corresponding Perron transformation that reduces a given family of systems to the so-called canonical system. It is also proved that for minimal invariant spaces the Perron transformation possesses the recurrence property.
Keywords: linear control systems, controllability space, dynamical systems.
Mots-clés : the Perron transformation
@article{VUU_2012_1_a6,
     author = {E. L. Tonkov},
     title = {The space of linear control systems and its canonical representatives},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {60--76},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/}
}
TY  - JOUR
AU  - E. L. Tonkov
TI  - The space of linear control systems and its canonical representatives
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 60
EP  - 76
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/
LA  - ru
ID  - VUU_2012_1_a6
ER  - 
%0 Journal Article
%A E. L. Tonkov
%T The space of linear control systems and its canonical representatives
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 60-76
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/
%G ru
%F VUU_2012_1_a6
E. L. Tonkov. The space of linear control systems and its canonical representatives. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 60-76. http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/

[1] Perron O., “Uber line Matrixtransformation”, Mathematische Zeitschrift., 32 (1930), 465–473 | DOI | MR | Zbl

[2] Millionschikov V. M., “O svyazi mezhdu ustoichivostyu kharakteristicheskikh pokazatelei i pochti privodimostyu lineinykh sistem differentsialnykh uravnenii s pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 3:12 (1967), 2127–2134

[3] Popova S. N., Tonkov E. L., “Soglasovannye sistemy i upravlenie pokazatelyami Lyapunova”, Differents. uravneniya, 33:2 (1997), 226–235 | MR | Zbl

[4] Tonkov E. L., “Kanonicheskii predstavitel lineinoi upravlyaemoi sistemy”, Vestnik Udmurtskogo universiteta. Matematika, 2003, no. 1, 113–128

[5] Anosov D. V., Lektsii po lineinoi algebre, Regulyarnaya i khaoticheskaya dinamika, M., 1999, 105 pp. | Zbl

[6] Anosov D. V., Aranson S. Kh., Arnold V. I., Bronshtein I. U., Grines V. Z., Ilyashenko Yu. S., Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR

[7] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[8] Birkgof Dzh. D., Dinamicheskie sistemy, Udmurtskii universitet, Izhevsk, 1999, 408 pp. | Zbl

[9] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byull. in-ta matem. pri MGU, 2:5 (1940), 1–52

[10] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl

[11] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[12] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[13] Tonkov E. L., “Globalno upravlyaemye lineinye sistemy”, Sovremennaya matematika i eë prilozheniya, 23, 2005, 145–165