The space of linear control systems and its canonical representatives
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 60-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The space of linear control systems that are parameterized with the help of a topological dynamical system is considered. For each invariant space (with respect to a flow in the dynamical system phase space) there are constructed its extension and the corresponding Perron transformation that reduces a given family of systems to the so-called canonical system. It is also proved that for minimal invariant spaces the Perron transformation possesses the recurrence property.
Keywords: linear control systems, controllability space, dynamical systems.
Mots-clés : the Perron transformation
@article{VUU_2012_1_a6,
     author = {E. L. Tonkov},
     title = {The space of linear control systems and its canonical representatives},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {60--76},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/}
}
TY  - JOUR
AU  - E. L. Tonkov
TI  - The space of linear control systems and its canonical representatives
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 60
EP  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/
LA  - ru
ID  - VUU_2012_1_a6
ER  - 
%0 Journal Article
%A E. L. Tonkov
%T The space of linear control systems and its canonical representatives
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 60-76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/
%G ru
%F VUU_2012_1_a6
E. L. Tonkov. The space of linear control systems and its canonical representatives. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 60-76. http://geodesic.mathdoc.fr/item/VUU_2012_1_a6/