Inverse boundary value problem for second order elliptic equation with additional integral condition
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 32-40
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse boundary value problem for the second order elliptic equation with an additional integral condition of the first kind is investigated. We introduce the definition of a classical solution for the considered inverse boundary value problem reduced to solving of the system of integral equations by the use of the Fourier method. First, the existence and uniqueness of solutions of the system of integral equations are proved by using the method of contraction mappings; and then the existence and uniqueness of classical solutions of the original problem are proved.
Keywords: inverse boundary value problem, Fourier method, classic solution.
Mots-clés : elliptic equation
@article{VUU_2012_1_a3,
     author = {Ya. T. Megraliev},
     title = {Inverse boundary value problem for second order elliptic equation with additional integral condition},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {32--40},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a3/}
}
TY  - JOUR
AU  - Ya. T. Megraliev
TI  - Inverse boundary value problem for second order elliptic equation with additional integral condition
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 32
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a3/
LA  - ru
ID  - VUU_2012_1_a3
ER  - 
%0 Journal Article
%A Ya. T. Megraliev
%T Inverse boundary value problem for second order elliptic equation with additional integral condition
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 32-40
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a3/
%G ru
%F VUU_2012_1_a3
Ya. T. Megraliev. Inverse boundary value problem for second order elliptic equation with additional integral condition. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 32-40. http://geodesic.mathdoc.fr/item/VUU_2012_1_a3/

[1] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differentsialnye uravneniya, 16:11 (1980), 1925–1935 | MR

[2] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 5:21 (1963), 155–160 | MR

[3] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differentsialnye uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[4] Nakhushev A. M., “Ob odnom priblizhënnom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego priblizheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differentsialnye uravneniya, 18:1 (1982), 72–81 | MR | Zbl

[5] Kapustin N. Yu., Moiseev E. I., “O spektralnykh zadachakh so spektralnym parametrom v granichnom uslovii”, Differentsialnye uravneniya, 33:1 (1997), 115–119 | MR | Zbl

[6] Kozhanov A. I., Pulkina L. S., “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differentsialnye uravneniya, 42:9 (2006), 1166–1179 | MR | Zbl

[7] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Matematicheskoe modelirovanie, 12:1 (2000), 94–103 | MR | Zbl

[8] Prilepko A. I., Kostin A. B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matematicheskii sbornik, 183:4 (1992), 49–68 | MR | Zbl

[9] Prilepko A. I., Tkachenko D. S., “Svoistva reshenii parabolicheskogo uravneniya i edinstvennost resheniya obratnoi zadachi ob istochnike s integralnym pereopredeleniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:4 (2003), 562–570 | MR | Zbl

[10] Kamynin V. L., “Ob obratnoi zadache opredeleniya pravoi chasti v parabolicheskom uravnenii s usloviem integralnogo pereopredeleniya”, Matematicheskie zametki, 77:4 (2005), 522–534 | DOI | MR | Zbl

[11] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR | Zbl

[12] Khudaverdiev K. I., Veliev A. A., Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010, 162 pp.