$L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to studying of estimations of scalar products of vector fields and their application in the proof of solvability for mathematical physics problems. The estimations of scalar products of vector field were proved in weighted functional spaces of summable functions. As an example of the application of such estimations there was proved the solvability for the problem of determination of stationary magnetic field in whole three-dimensional Euclidian space containing bounded conducting domain. The association between the proposed problem statement and the corresponding variational statement was shown too. There was investigated the possibility of determination of another unknown functions (electric field, volume density of electrical charge) inside the conducting domain.
Mots-clés : scalar product
Keywords: vector field, Maxwell equations, solvability, functional spaces.
@article{VUU_2012_1_a0,
     author = {A. Zhidkov and A. V. Kalinin and A. A. Tyukhtina},
     title = {$L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--14},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/}
}
TY  - JOUR
AU  - A. Zhidkov
AU  - A. V. Kalinin
AU  - A. A. Tyukhtina
TI  - $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2012
SP  - 3
EP  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/
LA  - ru
ID  - VUU_2012_1_a0
ER  - 
%0 Journal Article
%A A. Zhidkov
%A A. V. Kalinin
%A A. A. Tyukhtina
%T $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2012
%P 3-14
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/
%G ru
%F VUU_2012_1_a0
A. Zhidkov; A. V. Kalinin; A. A. Tyukhtina. $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 3-14. http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/

[1] Veil G., “Metod ortogonalnoi proektsii v teorii potentsiala”, Matematika. Teoreticheskaya fizika, Nauka, M., 1984, 275–307

[2] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Trudy MIAN SSSR, 59, 1960, 5–36 | MR | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[4] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl

[5] Maslennikova V. N., “Otsenki v $L_p$ i asimptotika pri $t\to\infty$ resheniya zadachi Koshi dlya sistemy Soboleva”, Trudy MIAN SSSR, 103, 1968, 117–141 | MR | Zbl

[6] Girault V., Raviart P.-A., Finite Element Approximation of the Navier–Stokes Equations, Springer-Verlag, New York, 1979, 207 pp. | MR | Zbl

[7] Kalinin A. V., Morozov S. F., “Statsionarnye zadachi dlya sistemy uravnenii Maksvella v neodnorodnykh sredakh”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 20:1 (1997), 24–31

[8] Kalinin A. V., “Nekotorye otsenki teorii vektornykh polei”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 20:1 (1997), 32–38

[9] Kalinin A. V., Kalinkina A. A., “Otsenki vektornykh polei i statsionarnaya sistema uravnenii Maksvella”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 25:1 (2002), 95–107

[10] Kalinin A. V., Kalinkina A. A., “$L_p$-otsenki vektornykh polei”, Izvestiya vuzov. Matematika, 2004, no. 3, 26–35 | MR | Zbl

[11] Kalinin A. V., “Otsenki skalyarnykh proizvedenii vektornykh polei i ikh primeneniya v nekotorykh zadachakh matematicheskoi fiziki”, Izvestiya instituta matematiki i informatiki UdGU (Izhevsk), 2006, no. 3(37), 55–56

[12] Zhidkov A. A., “Otsenki skalyarnykh proizvedenii vektornykh polei v neogranichennykh oblastyakh”, Vestnik Nizhegorodskogo gosuniversiteta im. N. I. Lobachevskogo, 2007, no. 1, 162–166

[13] Kalinin A. V., Otsenki skalyarnykh proizvedenii vektornykh polei i ikh primenenie v matematicheskoi fizike, Izd-vo Nizhegorodskogo gosuniversiteta im. N. I. Lobachevskogo, N. Novgorod, 2007, 319 pp.

[14] Kulon Zh.-L., Sabonnader Zh.-K., SAPR v elektrotekhnike, Mir, M., 1988, 208 pp.

[15] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985, 336 pp. | MR

[16] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1989, 616 pp.

[17] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 312 pp. | MR

[18] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR