Keywords: vector field, Maxwell equations, solvability, functional spaces.
@article{VUU_2012_1_a0,
author = {A. Zhidkov and A. V. Kalinin and A. A. Tyukhtina},
title = {$L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--14},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/}
}
TY - JOUR AU - A. Zhidkov AU - A. V. Kalinin AU - A. A. Tyukhtina TI - $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2012 SP - 3 EP - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/ LA - ru ID - VUU_2012_1_a0 ER -
%0 Journal Article %A A. Zhidkov %A A. V. Kalinin %A A. A. Tyukhtina %T $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2012 %P 3-14 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/ %G ru %F VUU_2012_1_a0
A. Zhidkov; A. V. Kalinin; A. A. Tyukhtina. $L_p$-estimations of vector fields in the unbounded areas and some electromagnetic theory problems in the inhomogeneous areas. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2012), pp. 3-14. http://geodesic.mathdoc.fr/item/VUU_2012_1_a0/
[1] Veil G., “Metod ortogonalnoi proektsii v teorii potentsiala”, Matematika. Teoreticheskaya fizika, Nauka, M., 1984, 275–307
[2] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Trudy MIAN SSSR, 59, 1960, 5–36 | MR | Zbl
[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR
[4] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl
[5] Maslennikova V. N., “Otsenki v $L_p$ i asimptotika pri $t\to\infty$ resheniya zadachi Koshi dlya sistemy Soboleva”, Trudy MIAN SSSR, 103, 1968, 117–141 | MR | Zbl
[6] Girault V., Raviart P.-A., Finite Element Approximation of the Navier–Stokes Equations, Springer-Verlag, New York, 1979, 207 pp. | MR | Zbl
[7] Kalinin A. V., Morozov S. F., “Statsionarnye zadachi dlya sistemy uravnenii Maksvella v neodnorodnykh sredakh”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 20:1 (1997), 24–31
[8] Kalinin A. V., “Nekotorye otsenki teorii vektornykh polei”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 20:1 (1997), 32–38
[9] Kalinin A. V., Kalinkina A. A., “Otsenki vektornykh polei i statsionarnaya sistema uravnenii Maksvella”, Vestnik NNGU. Seriya Matematicheskoe modelirovanie i optimalnoe upravlenie, 25:1 (2002), 95–107
[10] Kalinin A. V., Kalinkina A. A., “$L_p$-otsenki vektornykh polei”, Izvestiya vuzov. Matematika, 2004, no. 3, 26–35 | MR | Zbl
[11] Kalinin A. V., “Otsenki skalyarnykh proizvedenii vektornykh polei i ikh primeneniya v nekotorykh zadachakh matematicheskoi fiziki”, Izvestiya instituta matematiki i informatiki UdGU (Izhevsk), 2006, no. 3(37), 55–56
[12] Zhidkov A. A., “Otsenki skalyarnykh proizvedenii vektornykh polei v neogranichennykh oblastyakh”, Vestnik Nizhegorodskogo gosuniversiteta im. N. I. Lobachevskogo, 2007, no. 1, 162–166
[13] Kalinin A. V., Otsenki skalyarnykh proizvedenii vektornykh polei i ikh primenenie v matematicheskoi fizike, Izd-vo Nizhegorodskogo gosuniversiteta im. N. I. Lobachevskogo, N. Novgorod, 2007, 319 pp.
[14] Kulon Zh.-L., Sabonnader Zh.-K., SAPR v elektrotekhnike, Mir, M., 1988, 208 pp.
[15] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985, 336 pp. | MR
[16] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1989, 616 pp.
[17] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 312 pp. | MR
[18] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR