An asymptotic study of three-layered creeping flow and some geophysical applications
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 107-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to study the free-surface three-layered creeping flow. An asymptotic study of the governing equations reveals two different modes of evolution at a short and long time. The relation between layers' boundaries is obtained that is independent of a pre-history of the flow. The obtained results are applied to study a behavior of the deep interface beneath the large-scale lunar basin under the variation of geometrical and physical model's parameters.
Keywords: multi-layered flow, long-wave approximation, lubrication theory, nonlinear diffusion, ring basins.
@article{VUU_2011_4_a8,
     author = {V. V. Pak},
     title = {An asymptotic study of three-layered creeping flow and some geophysical applications},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {107--115},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a8/}
}
TY  - JOUR
AU  - V. V. Pak
TI  - An asymptotic study of three-layered creeping flow and some geophysical applications
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 107
EP  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a8/
LA  - ru
ID  - VUU_2011_4_a8
ER  - 
%0 Journal Article
%A V. V. Pak
%T An asymptotic study of three-layered creeping flow and some geophysical applications
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 107-115
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a8/
%G ru
%F VUU_2011_4_a8
V. V. Pak. An asymptotic study of three-layered creeping flow and some geophysical applications. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 107-115. http://geodesic.mathdoc.fr/item/VUU_2011_4_a8/

[1] Craster R. V., Matar O. K., “Dynamics and stability of thin liquid films”, Reviews of Modern Physics, 81:3 (2009), 1131–1198 | DOI

[2] Merkt D., Pototsky A., Bestehorn M., “Long-wave theory of bounded two-layer films with a free liquid-liquid interface: Short- and long-time evolution”, Phys. Fluids, 17 (2005), 064104 | DOI | MR | Zbl

[3] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Gostekhteorizdat, M.–L., 1950, 676 pp. | MR

[4] Pak V. V., “Nelineinaya model osesimmetrichnogo techeniya dvukhsloinoi vyazkoi zhidkosti so svobodnoi poverkhnostyu”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 2, 91–100

[5] Kovrizhnykh O. O., “Ob asimptoticheskom reshenii singulyarno vozmuschennoi sistemy s dvumya malymi parametrami”, Trudy in-ta matem. i mekh. UrO RAN, 13, no. 2, 2007, 124–134

[6] Belonosov V. S., Vishnevskii M. P., “Ob ustoichivosti statsionarnykh reshenii nelineinykh parabolicheskikh sistem”, Matem. sb., 104(146):4(12) (1977), 535–558 | MR | Zbl

[7] Borisov V. G., “O parabolicheskikh kraevykh zadachakh s malym parametrom pri proizvodnykh po $t$”, Matem. sb., 131(173):3(11) (1986), 293–308 | MR | Zbl

[8] Wieczorek M. A., Phillips R. J., “Lunar Multiring Basins and the Cratering Process”, Icarus, 139 (1999), 246–259 | DOI

[9] Pike R. J., Spudis P. D., “Basin-ring spacing on the Moon, Mercury, and Mars”, Earth, Moon, and Planets, 39 (1987), 129–194 | DOI

[10] Hikida H., Wieczorek M. A., “Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models”, Icarus, 192 (2007), 150–166 | DOI

[11] Zharkov V. N., Vnutrennee stroenie Zemli i planet, Nauka, M., 1983, 416 pp.

[12] Terkot D., Shubert Dzh., Geodinamika. Geologicheskoe prilozhenie fiziki sploshnykh sred, v. 2, Mir, M., 1985, 360 pp.