Mots-clés : local bifurcations
@article{VUU_2011_4_a6,
author = {A. N. Kulikov and D. A. Kulikov and A. S. Rudyi},
title = {Bifurcation of the nanostructures induced by ion bombardment},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {86--99},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov AU - A. S. Rudyi TI - Bifurcation of the nanostructures induced by ion bombardment JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2011 SP - 86 EP - 99 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/ LA - ru ID - VUU_2011_4_a6 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %A A. S. Rudyi %T Bifurcation of the nanostructures induced by ion bombardment %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2011 %P 86-99 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/ %G ru %F VUU_2011_4_a6
A. N. Kulikov; D. A. Kulikov; A. S. Rudyi. Bifurcation of the nanostructures induced by ion bombardment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 86-99. http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/
[1] Deissler R. J., “Turbulent bursts, spots and slugs in a generalized Ginzburg–Landau equation”, Physics letters A, 120:7 (1987), 334–340 | DOI | MR
[2] Bradley R. M., Haper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vae. Technol. A, 6:4 (1988), 2390–2395 | DOI
[3] Sigmund P., “Sputtering by ion bombardment. Theoretical concepts”, Sputtering by particle bombardment, v. I, ed. Behrisch R., Springer-Verlag, Berlin, 1981, 9–71 | DOI
[4] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Chislennoe modelirovanie formirovanie nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Yadernaya fizika i inzhiniring, 1:2 (2010), 151–158 | MR
[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU im. A. A. Zhdanova, L., 1950, 255 pp. | MR
[6] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 431 pp. | MR
[7] Marsden Dzh., MakKraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 369 pp. | MR | Zbl
[8] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR
[9] Neimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR
[10] Krein S. G., Birman M. Sh., Vilenkin N. Ya. i dr., Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. | MR
[11] Foias C., Sell G. R., Temam R., “Inertial manifold for non-linear evolutionary equations”, J. Diff. Eq., 73 (1988), 309–352 | DOI | MR
[12] Kulikov A. N., Integralnye mnogoobraziya nelineinykh avtonomnykh differentsialnykh uravnenii v gilbertovom prostranstve, Preprint No 85, Institut prikladnoi matematiki im. M. V. Keldysha AN SSSR, 1991, 24 pp. | MR
[13] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Dokl. RAN, 406:1 (2006), 25–29 | MR | Zbl
[14] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. uravneniya, 40:9 (2010), 1290–1299 | MR
[15] Kulikov A. N., Kulikov D. A., “Bifurkatsiya avtovoln obobschennogo kubicheskogo uravneniya Shredingera v sluchae trekh nezavisimykh peremennykh”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 23–34
[16] Kulikov A. N., Kulikov D. A., “Postkriticheskie i dokriticheskie bifurkatsii beguschikh voln modifitsirovannogo uravneniya Ginzburga–Landau”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 71–78