Bifurcation of the nanostructures induced by ion bombardment
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 86-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider ion-bombardment-induced processes for formation of periodic structures. As a mathematical model, we have chosen the generalized two-dimensional Kuramoto–Sivashinsky equation which is equivalent to the equation obtained by Bradley–Harper. The jagged relief obtained due to ionic bombardment can be explained from a mathematical point of view as local bifurcations of flat profile involving an exchange of stabilities. To describe the above relief asymptotic formulas are obtained. The bifurcation theory method for problems with infinite dimensional phase space is used to study nonlinear boundary value problem. In particular, we use normal form building which springs from Krylov–Bogolyubov method of averaging.
Keywords: ion bombardment, periodic nanostructures, Kuramoto-Sivashinsky equation, normal forms.
Mots-clés : local bifurcations
@article{VUU_2011_4_a6,
     author = {A. N. Kulikov and D. A. Kulikov and A. S. Rudyi},
     title = {Bifurcation of the nanostructures induced by ion bombardment},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {86--99},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
AU  - A. S. Rudyi
TI  - Bifurcation of the nanostructures induced by ion bombardment
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 86
EP  - 99
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/
LA  - ru
ID  - VUU_2011_4_a6
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%A A. S. Rudyi
%T Bifurcation of the nanostructures induced by ion bombardment
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 86-99
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/
%G ru
%F VUU_2011_4_a6
A. N. Kulikov; D. A. Kulikov; A. S. Rudyi. Bifurcation of the nanostructures induced by ion bombardment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 86-99. http://geodesic.mathdoc.fr/item/VUU_2011_4_a6/

[1] Deissler R. J., “Turbulent bursts, spots and slugs in a generalized Ginzburg–Landau equation”, Physics letters A, 120:7 (1987), 334–340 | DOI | MR

[2] Bradley R. M., Haper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vae. Technol. A, 6:4 (1988), 2390–2395 | DOI

[3] Sigmund P., “Sputtering by ion bombardment. Theoretical concepts”, Sputtering by particle bombardment, v. I, ed. Behrisch R., Springer-Verlag, Berlin, 1981, 9–71 | DOI

[4] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Chislennoe modelirovanie formirovanie nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Yadernaya fizika i inzhiniring, 1:2 (2010), 151–158 | MR

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU im. A. A. Zhdanova, L., 1950, 255 pp. | MR

[6] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 431 pp. | MR

[7] Marsden Dzh., MakKraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 369 pp. | MR | Zbl

[8] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR

[9] Neimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR

[10] Krein S. G., Birman M. Sh., Vilenkin N. Ya. i dr., Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. | MR

[11] Foias C., Sell G. R., Temam R., “Inertial manifold for non-linear evolutionary equations”, J. Diff. Eq., 73 (1988), 309–352 | DOI | MR

[12] Kulikov A. N., Integralnye mnogoobraziya nelineinykh avtonomnykh differentsialnykh uravnenii v gilbertovom prostranstve, Preprint No 85, Institut prikladnoi matematiki im. M. V. Keldysha AN SSSR, 1991, 24 pp. | MR

[13] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Dokl. RAN, 406:1 (2006), 25–29 | MR | Zbl

[14] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. uravneniya, 40:9 (2010), 1290–1299 | MR

[15] Kulikov A. N., Kulikov D. A., “Bifurkatsiya avtovoln obobschennogo kubicheskogo uravneniya Shredingera v sluchae trekh nezavisimykh peremennykh”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 23–34

[16] Kulikov A. N., Kulikov D. A., “Postkriticheskie i dokriticheskie bifurkatsii beguschikh voln modifitsirovannogo uravneniya Ginzburga–Landau”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 71–78