@article{VUU_2011_4_a4,
author = {S. R. Gallyamov and S. A. Mel'chukov},
title = {Hodge's idea in percolation: percolation threshold estimation by the unit cell},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {60--79},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a4/}
}
TY - JOUR AU - S. R. Gallyamov AU - S. A. Mel'chukov TI - Hodge's idea in percolation: percolation threshold estimation by the unit cell JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2011 SP - 60 EP - 79 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2011_4_a4/ LA - ru ID - VUU_2011_4_a4 ER -
%0 Journal Article %A S. R. Gallyamov %A S. A. Mel'chukov %T Hodge's idea in percolation: percolation threshold estimation by the unit cell %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2011 %P 60-79 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2011_4_a4/ %G ru %F VUU_2011_4_a4
S. R. Gallyamov; S. A. Mel'chukov. Hodge's idea in percolation: percolation threshold estimation by the unit cell. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 60-79. http://geodesic.mathdoc.fr/item/VUU_2011_4_a4/
[1] Gallyamov S. R., Melchukov S. A., “Ob odnom metode raschëta porogov protekaniya kvadratnoi i almaznoi reshëtok v perkolyatsionnoi zadache uzlov”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 33–44
[2] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshëtki v zadache uzlov v modeli reshëtki Bëte”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115
[3] Kadanoff L. P., Jotze W., Hamblen D., Hecht R., Lewis E. A. S., Palciauskas V. V., Rayl M., Swift J., Aspres D., Kane J., “Static Phenomena Near Critical Points: Theory and Experiment”, Rev. Mod. Phys., 39:2 (1967), 395–431 | DOI | MR
[4] Wilson K. G., “Renormalization group and critical phenomena”, Phys. Rev. B, 4:9 (1971), 3174–3183 | DOI | Zbl
[5] Feder E., Fraktaly, Mir, M., 1991 | MR
[6] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 52–58
[7] Gould H., Tobochnik J., An introduction to computer simulation methods application to physical systems, Reading, Addison-Wesley Publication Company, 1988; Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, v 2 ch., Ch. 2, Mir, M., 1990, 400 pp.
[8] Ziff R. M., Sapoval B., “The efficient determination of the percolation threshold by a frontier generating walk in a gradient”, J. Phys. A Math. Gen., 19 (1986), L1169–L1172 | DOI | MR
[9] Hodge W. V. D., The theory and applications of harmonic integrals, Cambridge, 1952 | MR
[10] Shioda T., “What is known about the Hodge conjecture?”, Advanced studies in Pure Math., 1 (1983), 55–68 | MR | Zbl
[11] Steenbrink J. H. M., “Some remarks about the Hodge conjecture”, Lect. Notes Math., 1246, 1987, 165–175 | DOI | MR | Zbl
[12] Krasnov V. A., “Algebraicheskie tsikly na veschestvennom algebraicheskom GM-mnogoobrazii i ikh prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl
[13] Gallyamov S. R., Melchukov S. A., “O kriticheskikh indeksakh v trëkhmernoi perkolyatsii v zadachakh uzlov i tvërdykh sfer”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 2, 67–80
[14] Stauffer D., Aharony A., Introduction to percolation theory, Tailor Francis, London, 1992 | MR
[15] Lorenz C. D., Ziff R. M., “Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation”, J. Phys. A Math. Gen., 31 (1998), 8147–8157 | DOI | Zbl
[16] Suding P. N., Ziff R. M., “Site percolation thresholds and universal formulas for the Archimedean lattices”, Phys. Rev. E, 60:1 (1999), 275–283 | DOI
[17] Grassberger P., “On the spreading of two-dimensional percolation”, J. Phys. A, 18 (1985), L215–L219 | DOI | MR