Smale–Fomenko diagrams and rough topological invariants of the Kowalevski–Yehia case
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 40-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the complete analytical classification of the atoms arising at the critical points of rank 1 of the Kowalevski–Yehia gyrostat. To classify the Smale–Fomenko diagrams, all separating values of the gyrostatic momentum are found. We present a kind of constructor of the Fomenko graphs; its application gives the complete description of the rough topology of this integrable case. It is proved that there exists exactly nine groups of identical molecules (not considering the marks). These groups contain 22 stable types of graphs and 6 unstable ones with respect to the number of critical circles on the critical levels.
Keywords: gyrostat, Kowalevski–Yehia case, diagrams, topological invariants.
@article{VUU_2011_4_a3,
     author = {M. P. Kharlamov and P. E. Ryabov},
     title = {Smale{\textendash}Fomenko diagrams and rough topological invariants of the {Kowalevski{\textendash}Yehia} case},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {40--59},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a3/}
}
TY  - JOUR
AU  - M. P. Kharlamov
AU  - P. E. Ryabov
TI  - Smale–Fomenko diagrams and rough topological invariants of the Kowalevski–Yehia case
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 40
EP  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a3/
LA  - ru
ID  - VUU_2011_4_a3
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%A P. E. Ryabov
%T Smale–Fomenko diagrams and rough topological invariants of the Kowalevski–Yehia case
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 40-59
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a3/
%G ru
%F VUU_2011_4_a3
M. P. Kharlamov; P. E. Ryabov. Smale–Fomenko diagrams and rough topological invariants of the Kowalevski–Yehia case. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 40-59. http://geodesic.mathdoc.fr/item/VUU_2011_4_a3/

[1] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Commun., 13:3 (1986), 169–172 | DOI | MR | Zbl

[2] Ryabov P. E., “Analiticheskaya klassifikatsiya osobennostei integriruemogo sluchaya Kovalevskoi–Yakhya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 4, 25–30

[3] Kharlamova I. I., Ryabov P. E., “Elektronnyi atlas bifurkatsionnykh diagramm girostata Kovalevskoi–Yakhya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 2, 147–162 | Zbl

[4] Kharlamov M. P., Kharlamova I. I., Shvedov E. G., “Bifurkatsionnye diagrammy na izoenergeticheskikh urovnyakh girostata Kovalevskoi–Yakhya”, Mekhanika tverdogo tela, 40, 2010, 77–90 | MR

[5] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Doklady AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[6] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd-vo RKhD, Izhevsk, 1999 | MR | Zbl

[7] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[8] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[9] Ryabov P. E., Bifurkatsionnoe mnozhestvo zadachi o dvizhenii tverdogo tela vokrug nepodvizhnoi tochki v sluchae Kovalevskoi–Yakhi, dis. $\dots$ kand. fiz.-matem. nauk, MGU, Moskva, 1997, 143 pp.

[10] Ryabov P. E., Kharlamov M. P., “Bifurkatsii pervykh integralov v sluchae Kovalevskoi–Yakhi”, Regular and Chaotic Dynamics, 2:2 (1997), 25–40 | MR | Zbl

[11] Gashenenko I. N., “Integralnye mnogoobraziya i topologicheskie invarianty odnogo sluchaya dvizheniya girostata”, Mekhanika tverdogo tela, 29, 1997, 1–7 | MR | Zbl

[12] Kharlamov M. P., “Bifurkatsii sovmestnykh urovnei pervykh integralov v sluchae Kovalevskoi”, Prikladnaya matematika i mekhanika, 47:6 (1983), 922–930 | MR | Zbl

[13] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sistem v dinamike tverdogo tela”, Doklady AN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[14] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular and Chaotic Dynamics, 10:4 (2005), 381–398 | DOI | MR | Zbl

[15] Kharlamov M. P., “Kriticheskie podsistemy girostata Kovalevskoi v dvukh postoyannykh polyakh”, Nelineinaya dinamika, 3:3 (2007), 331–348

[16] Kharlamov P. V., Lektsii po dinamike tverdogo tela, Izd-vo NGU, Novosibirsk, 1965, 221 pp.

[17] Gashenenko I. N., “Novyi klass dvizhenii tyazhelogo girostata”, Dokl. AN SSSR, 318:1 (1991), 66–68 | MR | Zbl

[18] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo Leningr. un-ta, L., 1988, 200 pp. | MR

[19] Bolsinov A. V., Rikhter P. Kh., Fomenko A. T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | DOI | MR | Zbl

[20] Morozov P. V., “Vychislenie invariantov Fomenko–Tsishanga v integriruemom sluchae Kovalevskoi–Yakhi”, Matem. sb., 198:8 (2007), 59–82 | DOI | MR | Zbl

[21] Kharlamova E. I., Kharlamov P. V., “Novoe reshenie differentsialnykh uravnenii dvizheniya tela, imeyuschego nepodvizhnuyu tochku, pri usloviyakh S. V. Kovalevskoi”, Doklady AN SSSR, 189:5 (1969), 967–968 | Zbl

[22] Kharlamov P. V., “Odin sluchai integriruemosti uravnenii dvizheniya tverdogo tela, imeyuschego nepodvizhnuyu tochku”, Mekhanika tverdogo tela, 3, 1971, 57–64

[23] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. in Soviet Math., 6, 1991, 67–146 | MR | Zbl

[24] Oshemkov A. A., “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Trudy seminara po vektornomu i tenzornomu analizu, 25:2 (1993), 23–109 | Zbl

[25] Moskvin A. Yu., “Topologiya sloeniya Liuvillya integriruemogo sluchaya Dullina–Matveeva na dvumernoi sfere”, Matem. sbornik, 199:3 (2008), 95–132 | DOI | MR | Zbl

[26] Gashenenko I. N., Invariantnye mnogoobraziya i mnozhestva dopustimykh skorostei v dinamike tverdogo tela, dis. $\dots$ d-ra fiz.-matem. nauk, IPMM NAN Ukrainy, Donetsk, 2008, 300 pp.

[27] Gashenenko I. N., “Bifurkatsionnoe mnozhestvo zadachi o dvizhenii girostata, podchinennogo usloviyam Kovalevskoi”, Mekhanika tverdogo tela, 27, 1995, 31–35 | MR | Zbl