Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 144-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article analyzes the disadvantages of Aristotle syllogistic basis. The author indicates reasons for paradoxes of tangible implication in classical logics. It is suggested to verify correlations between a conditioned judgment and a tangible implication. Such paradoxes are not allowed in the multi-level syllogistic orthogonal basis.
Keywords: syllogistics, formal logics, orthogonal basis, Boolean algebra, multi-level syllogistics.
Mots-clés : paradoxes of tangible implication, polysyllogism
@article{VUU_2011_4_a12,
     author = {Yu. M. Smetanin},
     title = {Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {144--162},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a12/}
}
TY  - JOUR
AU  - Yu. M. Smetanin
TI  - Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 144
EP  - 162
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a12/
LA  - ru
ID  - VUU_2011_4_a12
ER  - 
%0 Journal Article
%A Yu. M. Smetanin
%T Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 144-162
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a12/
%G ru
%F VUU_2011_4_a12
Yu. M. Smetanin. Analysis of paradoxes of tangible implication in the orthogonal basis of syllogistics. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 144-162. http://geodesic.mathdoc.fr/item/VUU_2011_4_a12/

[1] Aristotel, Sochineniya v chetyrekh tomakh, v. 1, Mysl, M., 1975; т. 2, 1978

[2] Brusentsov N. P., Ustranenie paradoksov i khimer, Fond “Novoe tysyacheletie”, M., 2010

[3] Brusentsov N. P., Iskusstvo dostovernogo rassuzhdeniya. Neformalnaya rekonstruktsiya aristotelevoi sillogistiki i bulevoi matematiki mysli, Fond “Novoe tysyacheletie”, M., 1998

[4] Brusentsov N. P., Bluzhdanie v trekh sosnakh, Priklyucheniya dialektiki v informatike, SvR-Argus, M., 2000 URL: http://ternarycomp.narod.ru/3PINES.DOC

[5] Brusentsov N. P., “Logika i intellekt”, Iskusstvennyi intellekt, 2004, no. 2, 28–31

[6] Valkov K. I., Proektsionnoe modelirovanie i avtomatizatsiya, ucheb. posobie dlya fakulteta povysheniya kvalifikatsii, LISI, L., 1985, 86 pp.

[7] Vasilev N. I., Voobrazhaemaya logika. Izbrannye trudy, Nauka, M., 1989, 124 pp. | MR

[8] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969, 264 pp. | MR

[9] Gilbert D., Akkerman V., Osnovy teoreticheskoi logiki, Inostr. lit., M., 1947

[10] Gorbatov V. A., Teoriya chactichno uporyadochennykh sistem, Sovetskoe radio, M., 1976, 336 pp. | MR | Zbl

[11] Zakrevskii D. A., “K formalizatsii polisillogistiki”, Logicheskii vyvod, Nauka, M., 1979, 300–309 | MR

[12] Kuzina E. B., Logika v kratkom izlozhenii i uprazhneniyakh, Izd-vo MGU, M., 2000, 240 pp.

[13] Kuzichev A. S., Diagrammy Venna, Nauka, M., 1968, 253 pp.

[14] Kulik B. A., Logicheskii analiz sistem na osnove algebraicheskogo podkhoda, dis. $\dots$ d-ra fiz.-matem. nauk, SPbGU, SPb., 2008, 266 pp. | MR

[15] Kulik B. A., Logicheskie osnovy zdravogo smysla, ed. D. A. Pospelov, Politekhnika, SPb., 1997, 131 pp.

[16] Kerrol L., “Simvolicheskaya logika”, Istoriya s uzelkami, Mir, M., 1973, 408 pp. | MR

[17] Lobanov V. I., Russkaya veroyatnostnaya logika, Russkaya pravda, M., 2009, 320 pp.

[18] Losev F. F., “Kriticheskie zametki o burzhuaznoi matematicheskoi logike”, Istoriko-matematicheskie issledovaniya. 2-ya seriya, 8(43), Yanus-K, M., 2003, 339–401 | MR

[19] Lukasevich Ya., Aristotelevskaya sillogistika s tochki zreniya sovremennoi formalnoi logiki, Inostr. lit., M., 1959

[20] Nefedov V. N., Osipova V. A., Kurs diskretnoi matematiki, Izd-vo MAI, M., 1992, 264 pp.

[21] Plutarkh, Sravnitelnye zhizneopisaniya v dvukh tomakh, v. 2, Nauka, M., 1994

[22] Poretskii P. S., O sposobakh resheniya logicheskikh ravenstv i ob obratnom sposobe matematicheskoi logiki, Kazan, 1884

[23] Rassel B., Iskusstvo myslit, Ideya-Press, Dom intellektualnoi knigi, M., 1999, 240 pp.

[24] Smetanin Yu. M., “Ortogonalnyi bazis sillogistiki ili kakaya logika nuzhna ekonomistam”, Menedzhment: teoriya i praktika (UdGU), 2009, no. 3–4, 25–42

[25] Smetanin Yu. M., “Sopostavlenie rasshirennoi algebry mnozhestv i algebry logiki s tochki zreniya problem polisillogistiki”, Menedzhment: teoriya i praktika (UdGU), 2010, no. 3–4, 12–27

[26] Smetanin Yu. M., “Ortogonalnyi bazis sillogistiki”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 155–166

[27] Smetanin Yu. M., “Algoritm resheniya polisillogizmov v ortogonalnom bazise posredstvom ischisleniya konstituentnykh mnozhestv”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 4, 172–185