On one variational smoothing problem
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 9-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.
Keywords: linear autonomous difference or differential equations, smoothing, prediction, renewal process, fast recurrence algorithms.
Mots-clés : orthogonal projection, filtration
@article{VUU_2011_4_a1,
     author = {A. O. Egorshin},
     title = {On one variational smoothing problem},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {9--22},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a1/}
}
TY  - JOUR
AU  - A. O. Egorshin
TI  - On one variational smoothing problem
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 9
EP  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a1/
LA  - ru
ID  - VUU_2011_4_a1
ER  - 
%0 Journal Article
%A A. O. Egorshin
%T On one variational smoothing problem
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 9-22
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a1/
%G ru
%F VUU_2011_4_a1
A. O. Egorshin. On one variational smoothing problem. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 9-22. http://geodesic.mathdoc.fr/item/VUU_2011_4_a1/

[1] Linnik Yu. V., Metod naimenshikh kvadratov i osnovy teorii obrabotki rezultatov nablyudenii, Fizmatgiz, M., 1961, 349 pp. | MR

[2] Wiener N., Extrapolation, Interpolation, and Smoothing of Stationary Time Series, Technology Press and Wiley, NY, 1949 | MR | Zbl

[3] Kalman R. E., “A new approach to linear filtering and prediction problems”, Trans. ASME J. Basic Eng. Ser. D, 82 (1960), 34–45, (also published as ASME Paper 59-IRD-11)

[4] Li R., Optimalnye otsenki, opredelenie kharakteristik i upravlenie, Nauka, M., 1966, 176 pp.

[5] Kailath T., “Same New Algorithms for Recursive Estimation in Constant Linear System”, IEEE Trans. Inform. Theory, IT-19:6 (1973), 750–760 | DOI | MR | Zbl

[6] Rao R., Lineinye statisticheskie metody i ikh primenenie, Nauka, M., 1968, 548 pp. | MR | Zbl

[7] Levinson N., “The Wiener RMS (root-mean-square) Error Criterion in Filter Design and Prediction”, J. Math. Phys., 25 (1947), 261–278 | DOI | MR

[8] Krein M. G., “Ob integralnykh uravneniyakh, porozhdayuschikh differentsialnye uravneniya 2-go poryadka”, DAN, 97 (1954), 21–24 | MR

[9] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[10] Egorshin A. O., “Ob odnom sposobe otsenki koeffitsientov modeliruyuschikh uravnenii dlya posledovatelnostei”, Sib. zhurn. industr. matem., 3:2(6) (2000), 78–96 | MR | Zbl

[11] Egorshin A. O., “Identifikatsiya statsionarnykh modelei v unitarnom prostranstve”, Avtomatika i telemekhanika, 2004, no. 12, 29–48 | MR | Zbl

[12] Egorshin A. O., “Variatsionnaya diskretizatsiya i identifikatsiya lineinykh statsionarnykh differentsialnykh uravnenii”, Identifikatsiya sistem i zadachi upravleniya, Trudy III Mezhdunar. konf. SICPRO' 04, IPU RAN, Moskva, 2004, 1824–1883

[13] Yegorshin A. O., “Orthogonalization, Factorization, and Identification: As to The Theory of Recursive Equation In Linear Algebra”, Siberian Electronic Mathematical Reports (SEMR), 4 (2007), 482–503 URL: http://semr.math.nsc.ru/v4/p482-503.pdf | MR | Zbl

[14] Glazman I. M, Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969, 475 pp. | MR | Zbl